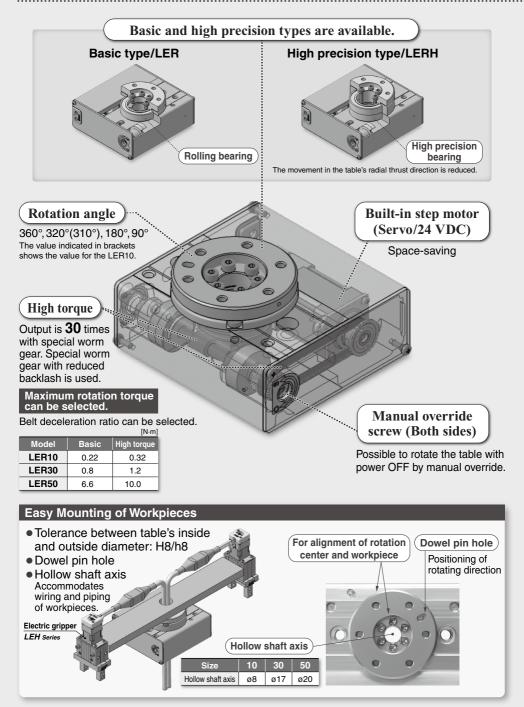
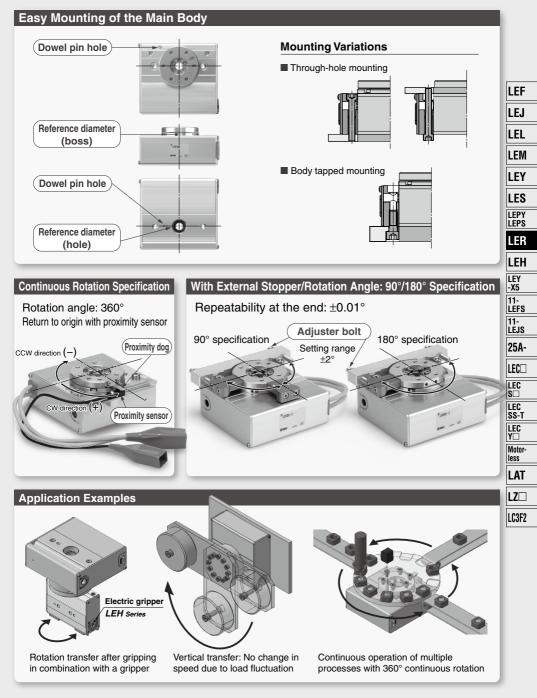

Electric Rotary Table

LER Series

setting kit or teaching box


* Not applicable to CE.


	Programless type
L	LECP1 Series
Ŀ	 14 points
	positioning
	 Control panel
3	setting

SMC

Electric Rotary Table

INDEX

Model Selection Pag	e 404
---------------------	-------

Step Motor (Servo/24 VDC) Electric Rotary Table LER Series

How to Order Page 410	
Specifications Page 411	
Construction Page 412	
Dimensions Page 413	

Step Motor (Servo/24 VDC)

Continuous Rotation Specification Electric Rotary Table LER Series

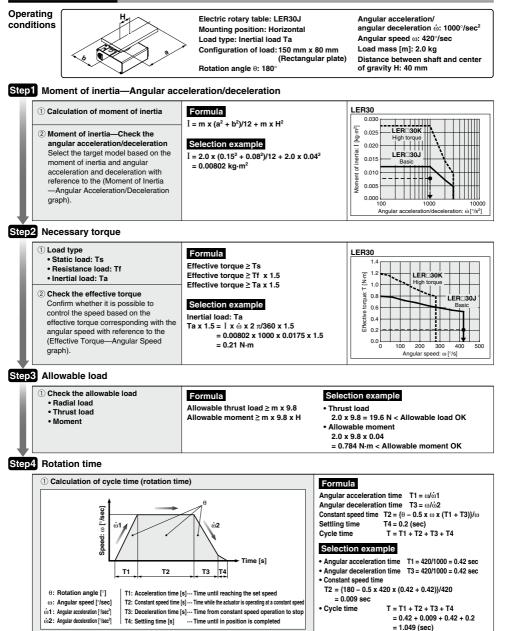
How to Order	····· Page 416
Specifications	······ Page 417
Construction	····· Page 418
Dimensions	····· Page 419

Specific Product Precautions Page 422

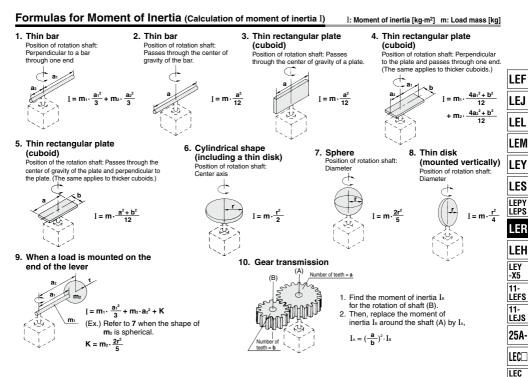
Step Motor (Servo/24 VDC) Controller

Step Data Input Type/LECP6 Series	- Page 560
Controller Setting Kit/LEC-W2	Page 569
Teaching Box/ <i>LEC-T1</i>	- Page 570
CC-Link Direct Input Type/LECPMJ series	·· Page 600
Controller Setting Kit/LEC-W2	Page 604
Teaching Box/ <i>LEC-T1</i>	- Page 605
Gateway Unit/ <i>LEC-G series</i>	Page 572
Programless Controller/LECP1 Series	- Page 576
Step Motor Driver/LECPA series	Page 590
Controller Setting Kit/LEC-W2	Page 597
Teaching Box/ <i>LEC-T1</i>	- Page 598

Electric Actuators


Rotary Table

LER Series

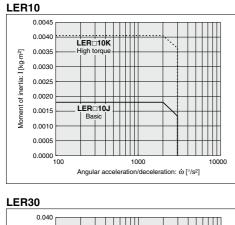


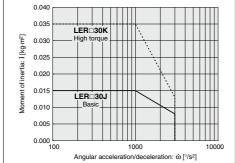
Selection Procedure

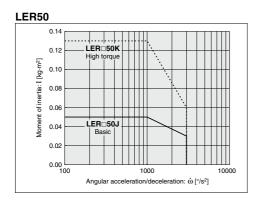
Model Selection LER Series Step Motor (Servo/24 VDC)

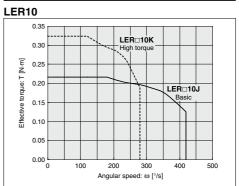
Load Type

		Load type			
		nce load: Tf	Inertial load	nertial load: Ta	
Only pressing force is necessary. (e.g. for clamping)	Gravity or friction force i	s applied to rotating direction.	Rotate the load with inertia.		
	Gravity is applied.	Friction force is applied.	Center of rotation and center of gravity of the load are concentric.	Rotation shaft is vertical (up and	
L F				down).	
	C mg				
				\mathbb{T}	
Ts = F·L	Gravity is applied to rotating direction.	Friction force is applied to rotating direction.	Ta = Ι·ώ·2 π/360 (Ta = Ι·ώ·0.0175)		
Ts: Static load [N·m]	Tf = m⋅g⋅L	$Tf = \mu \cdot m \cdot g \cdot L$, , ,		
 F : Clamping force [N] L : Distance from the rotation center 	Tf: Resistance load [N·m]		Ta: Inertial load [N·m]		
 bistance from the rotation center to the clamping position [m] 	 m: Load mass [kg] g: Gravitational acce L: Distance from the 	eleration 9.8 [m/s ²] rotation center to the point e gravity or friction force [m]	 I : Moment of inertia [kg·m² ώ : Angular acceleration/de ω : Angular speed [°/sec] 		
Necessary torque: T = Ts	Necessary torqu	ie: T = Tf x 1.5 Note 1)	Necessary torque: T = T	a x 1.5 Note 1)	
 Resistance load: Gravity or friction force is applied to rotating direction. Ex. 1) Rotation shaft is horizontal (lateral), and the rotation center and the center of gravity of the load are not concentric. Ex. 2) Load moves by sliding on the floor. * The total of resistance load and inertial load is the necessary torque. T = (Tf + Ta) x 1.5 		Ex. 1) Rotation shaft is ve Ex. 2) Rotation shaft is ho of gravity of the load * Necessary torque	rizontal (lateral), and rotation cer	nter and the center	

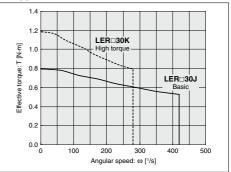

S LEC

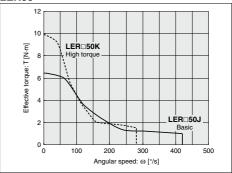

LER Series Step Motor (Servo/24 VDC)


For Step Motor (Servo/24 VDC) LECP6, LECP1, LECPMJ


Moment of Inertia—Angular Acceleration/Deceleration

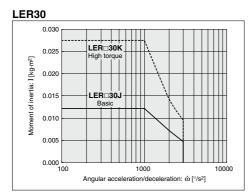
Effective Torque—Angular Speed

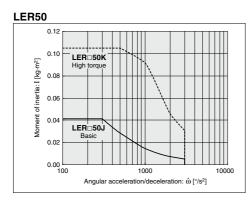




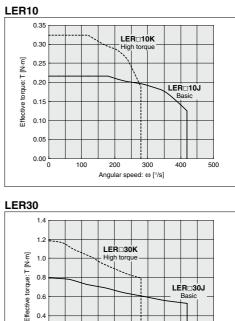
LER30

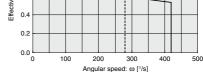


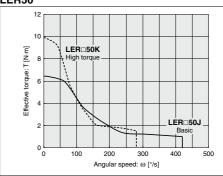

Step Motor (Servo/24 VDC)


For the LECP6/LECP1/LECPMJ, refer to page 406.

For Step Motor (Servo/24 VDC) LECPA


Moment of Inertia—Angular Acceleration/Deceleration





Effective Torque—Angular Speed

LER50

11-LEJS 25A-LEC SD LEC SS-T LEC YD Motorless LAT

LEF

LEJ

LEL

LEM

LEY

LES

LEPY

LEPS

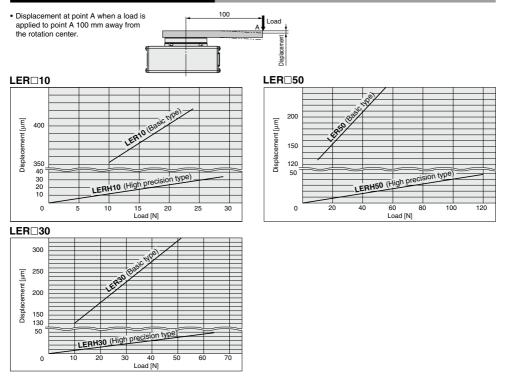
LER

LEY

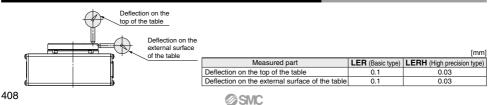
-X5

11-

LĖFS



LC3F2


Allowable Load

			e L	(a) 1 (b)	اور)
0.	Allowable ra	adial load [N]	Allowable thrust load [N] (a) (b)		Allowable moment [N·m]		
Size	Basic type	High precision type			High precision type	Basic type	High precision type
10	78	86	74	78	107	2.4	2.9
30	196	233	197	363	398	5.3	6.4
50	314	378	296	398	517	9.7	12.0

Table Displacement (Reference Value)

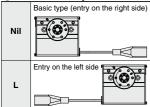
Deflection Accuracy: Displacement at 180° Rotation (Guide)

LEF
LEJ
LEL
LEM
LEY
LES
LEPY LEPS
LER
LEH
LEY -X5
11- LEFS
11- LEJS
25A-
LEC
LEC S 🗆
LEC SS-T
LEC Y
Motor- less
LAT
LZ
LC3F2

Step Motor (Servo/24 VDC)

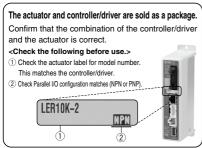
Electric Rotary Table

LER Series LER10, 30, 50


How to Order

2 Siz	е
10	
30	
50	

5 Motor cable entry


8 Controller/Driver type*

	na onei/Briver type		
Nil	Without controller/driv	er	
6N	LECP6	NPN	
6P	(Step data input type)	PNP	
1N	LECP1	NPN	
1P	(Programless type)	PNP	
MJ	LECPMJ*2		
IVIJ	(CC-Link direct input type)	_	
AN	LECPA*3	NPN	
AP	(Pulse input type)	PNP	

*1 For details about controller/driver and compatible motor, refer to the compatible controller/driver below.

*2 Not applicable to CE.

∗3 When pulse signals are open collector, order the current limiting resistor (LEC-PA-R-□) on page 596 separately.

* Refer to the operation manual for using the products. Please download it via our website, http://www.smcworld.com

Max. rotating torque [N·m]

Symbol	Туре	LER10	LER30	LER50
к	High torque	0.32	1.2	10
J	Basic	0.22	0.8	6.6

6 Actuator cable type*1

-			
Nil	Without cable		
S	Standard cable		
R	Robotic cable (Flexible cable)*		

*1 The standard cable should be used on fixed parts. For using on moving parts, select the robotic cable.

*2 Fix the motor cable protruding from the actuator to keep it unmovable. For details about fixing method, refer to Wiring/Cables in the Electric Actuators Precautions.

9 I/O cable length [m]*1, Communication plug

Nil	Without cable (Without communication plug connector)*3
1	1.5
3	3*2
5	5* ²
S	Straight type communication plug connector*3
Т	T-branch type communication plug connector*3

- *1 When "Without controller/driver" is selected for controller/driver types, I/O cable cannot be selected. Refer to page 568 (For LECP6), page 582 (For LECP1) or page 596 (For LECPA) if I/O cable is required.
- *2 When "Pulse input type" is selected for controller/driver types, pulse input usable only with differential. Only 1.5 m cables usable with open collector.
- *3 For the LECPMJ, only "Nil", "S" and "T" are selectable since I/O cable is not included.

Compatible Controller/Driver

4 Rotation angle [°]

Symbol	LER10	LER30	LER50	
Nil	310	320		
2	External stopper: 180			
3	External stopper: 90			

RoHS

Actuator cable length [m]

Nil	Without cable	8	8*		
1	1.5	Α	10*		
3	3	В	15*		
5	5	С	20*		

 Produced upon receipt of order (Robotic cable only) Refer to the specifications Note 3) on page 411.

Controller/Driver mounting

Nil	Nil Screw mounting	
D	DIN rail mounting*	

* DIN rail is not included. Order it separately.

▲Caution

[CE-compliant products]

- DEMC compliance was tested by combining the electric actuator LER series and the controller LEC series. The EMC depends on the configuration of the customer's control panel and the relationship with other electrical equipment and wring. Therefore, conformly to the EMC directive cannot be certified for SMC components incorporated into the customer's equipment under actual operating conditions. As a result, it is necessary for the customer to verify conformity to the EMC directive for the machinery and equipment as a whole.
- ② CC-Link direct input type (LECPMJ) is not CE-compliant. [UL-compliant products]

When conformity to UL is required, the electric actuator and controller/driver should be used with a UL1310 Class 2 power supply.

Туре	Step data input type	CC-Link direct input type	Programless type	Pulse input type
Series	LECP6	LECPMJ	LECP1	LECPA
Features	Value (Step data) input/Standard controller	CC-Link direct input	Capable of setting up operation (step data) without using a PC or teaching box	Operation by pulse signals
Compatible motor		Step motor (Servo/24 VDC)		
Maximum number of step data	64 p	oints	14 points	_
Dower ownshi weltere	24 VDC			
Power supply voltage		24 \	/DC	

Electric Rotary Table LER Series Step Motor (Servo/24 VDC)

LER 10K LER 10J LER 30K LER 30J LER 50K LER 50J

8

1.2

0.48 to 0.60

0.035

0.027

20 to 280

320

7.5

10

4.0 to 5.0

0.13

0 10

20 to 280

12

6.6

2.6 to 3.3

0.05

0.04

30 to 420

LEF

LEJ

LEL

LEM

LEY LES LEPY LEPS

LER

LEH

LEY

-X5

11-LEFS

11-

I F.IS

12

0.8

0.32 to 0.40

0.015

0.012

30 to 420

310

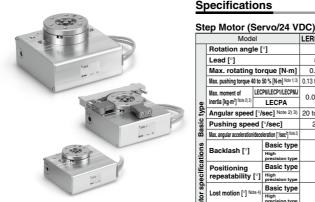
12

0.22

0.09 to 0.11

0.0018

30 to 420


8

0.32

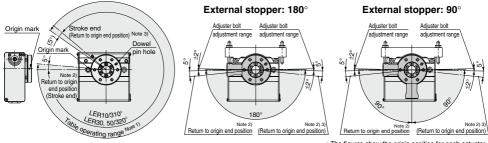
0.13 to 0.16

0.0040

20 to 280

Note 1) Pushing force accuracy is LER10: ±30% (F.S.), LER30: ±25% (F.S.), LER50: ±20% (F.S.).

Note 2) The angular acceleration, angular deceleration and angular speed may fluctuate due to variations in the moment of inertia Refer to "Moment of Inertia-Angular Acceleration/


Deceleration, Effective Torque-Angular Speed" graphs on pages 406 and 407 for confirmation.

- Note 3) The speed and force may change depending on the cable length, load and mounting conditions. Furthermore, if the cable length exceeds 5 m, then it will decrease by up to 10% for each 5 m. (At 15 m: Reduced by up to 20%)
- Note 4) A reference value for correcting an error in reciprocal operation.
- Note 5) Impact resistance: No malfunction occurred when the slide table was tested with a drop tester in both an axial direction and a perpendicular direction to the lead screw. (Test was performed with the actuator in the initial state.) Vibration resistance: No malfunction occurred in a test

ranging between 45 to 2000 Hz. Test was performed in both an axial direction and a perpendicular direction to the lead screw. (Test was performed with the actuator in the initial state.)

- Note 6) The power consumption (including the controller) is for when the actuator is operating.
- Note 7) The standby power consumption when operating (including the controller) is for when the actuator is stopped in the set position during operation.
- Note 8) The maximum instantaneous power consumption (including the controller) is for when the actuator is operating. This value can be used for the selection of the power supply.

Table Rotation Angle Range

Model

Max. rotating torque [N·m]

Max. pushing torque 40 to 50 % [N-m] Note 1) 3)

Angular speed [°/sec] Note 2) 3)

LECP6/LECP1/LECPMJ

LECPA

Rotation angle [°]

Lead [°]

Max moment of

type

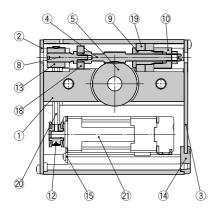
inertia [kg·m²] Note 2) 3)

Note 1) Range within which the table can move when it returns to origin.

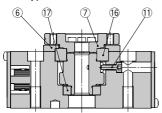
Make sure a workpiece mounted on the table does not interfere with the workpieces and facilities around the table.

Note 2) Position after return to origin. The position varies depending on whether there is an external stopper.

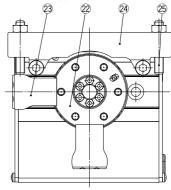
Note 3) [] for when the direction of return to origin has changed.

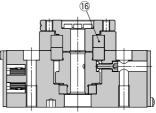

	Angular speed ["/sec] Note 2/ 0/ 201		20 10 280	30 10 420	20 10 200	30 10 420	20 10 200	30 10 420	
Basic ■	Pushi	ushing speed [°/sec]		20	30	20 30 20 30			30
B	Max. angular acceleration/deceleration [*/sec ²] Note 2)					3000			
Tions	Backlash [°] Basic type High precision type		±C	0.3		±0 ±0			
		oning tability [°]	Basic type	±0	±0.05			±0.05 ±0.03	
tor sp	Lost mo	otion [°] Note 4)	Basic type High precision type	0.3 o	r less		0.3 o 0.2 o		
il št	mpact/V	ibration resista	ince [m/s ²] Note 5)			150	/30		
Ă	Actua	tion type			Spec	cial worm g	ear + Belt	drive	
Ν	Max. op	perating freq	uency [c.p.m]			6	0		
0	Opera	ting temp.	range [°C]			5 to	40		
0	Operati	ing humidity	range [%RH]		90 0	or less (No	condensat	ion)	
	Woiał	nt [kg]	Basic type	0.	49	1.	.1	2	.2
	weigi		High precision type	0.	52	1.	.2	2	.4
F	Rotation angle -2/ arm (1 pc.) [°] -3/ arm (2 pcs.)		180						
stopper type				90					
stoppe		tability at t xternal stop	the end [°]/ oper			±0.	.01		
	Externa	al stopper se	tting range [°]			±	2		
External		-2/external	Basic type	0.	55	1.	.2	2	.5
	Veight	arm (1 pc.)	High precision type	0.	61	1.	.4	2	.7
[kg]	-3/external	Basic type	0.		1.	.2		.6
		arm (1 pc.)	High precision type	0.			.4		.8
۲ S	Motor				-		28		42
N g	Motor					ep motor (S			
Ĕ E	Enco				Incrementa			se/rotation)	
ğ F		r supply [\				24 VD0			
° F			on [W] Note 6)		1	2	2	3	4
		y power cons perating [W]					2		3
Ξ N	Max. instantaneous power consumption [W] Note 8)			1	4	4	2	5	7

* The figures show the origin position for each actuator.


@SMC

Construction

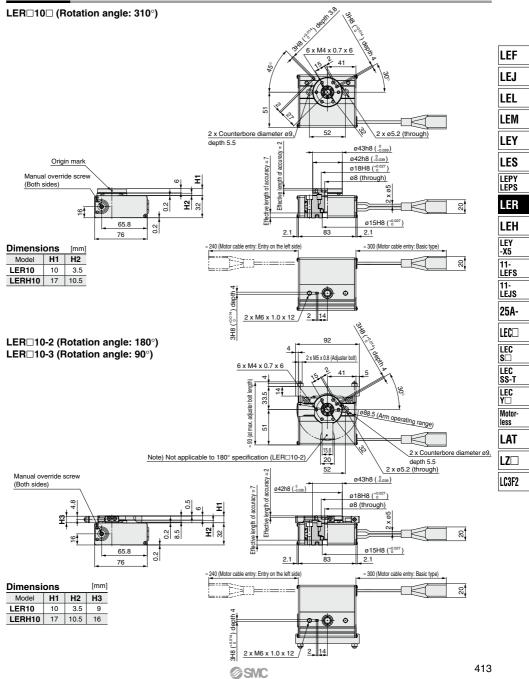

Basic type


Component Parts

COI	nponent	Fails		
No.	Des	cription	Material	Note
1	Body		Aluminum alloy	Anodized
2	Side plate	A	Aluminum alloy	Anodized
3	Side plate	В	Aluminum alloy	Anodized
4	Worm scre	w	Stainless steel	Heat treated + Specially treated
5	Worm whe	el	Stainless steel	Heat treated + Specially treated
6	Bearing co	ver	Aluminum alloy	Anodized
7	Table		Aluminum alloy	
8	Joint		Stainless steel	
9	Bearing ho	lder	Aluminum alloy	
10	Bearing sto	opper	Aluminum alloy	
11	Origin bolt		Carbon steel	
12	Pulley A		Aluminum alloy	
13	Pulley B		Aluminum alloy	
14	Grommet		NBR	
15	Motor plate		Carbon steel	
16	Basic type High precision type	Deep groove ball bearing Special ball bearing	_	
17			—	
18	Deep groove ball bearing		_	
19	Deep groove ball bearing		_	
20	Belt		_	
21	Step motor (Servo/24 VDC)		_	

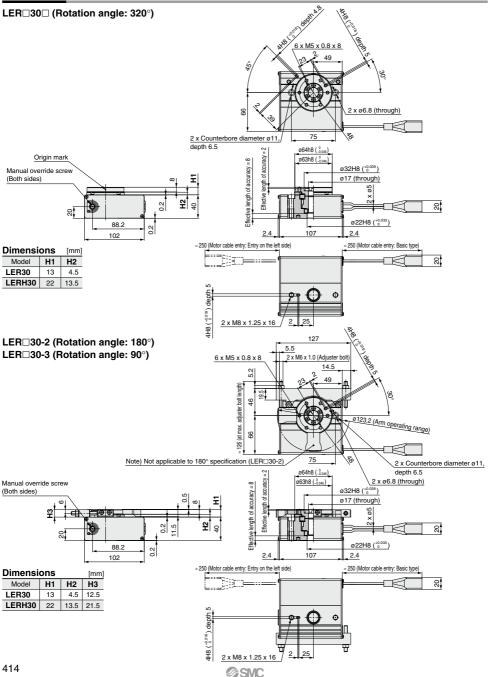
External stopper type

High precision type

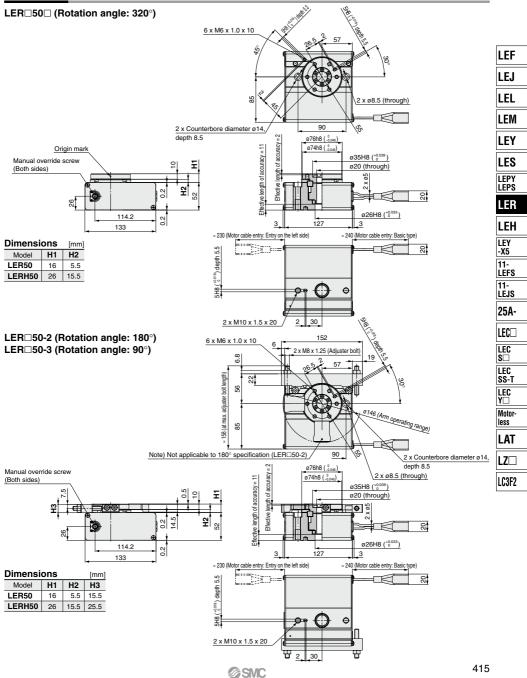


Component Parts

No.	Description	Material	Note
22	Table	Aluminum alloy	Anodized
23	Arm	Carbon steel	Heat treated + Electroless nickel treated
24	Holder	Aluminum alloy	Anodized
25	Adjuster bolt	Carbon steel	Heat treated + Chromate treated
-			


Electric Rotary Table LER Series

Dimensions


LER Series Step Motor (Servo/24 VDC)

Dimensions

Electric Rotary Table LER Series

Dimensions

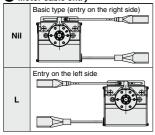
Step Motor (Servo/24 VDC)

10

LER

2 Size

10


30 50

Continuous Rotation Specification Electric Rotary Table LER Series LER10, 30, 50

How to Order

4 Motor cable entry

Controller type*1

Nil	Without controller	
6N	LECP6	
6P	(Step data input type)	PNP
MJ	LECPMJ*2 (CC-Link direct input type)	-

*1 For details about controller and compatible motor, refer to the compatible controller below The LECP1 and LECPA cannot be selected. *2 Not applicable to CE.

Actuator cable type*1 *2

Without cable
Standard cable

1

Robotic cable (Flexible cable)*3 R *1 The standard cable should be used on fixed

Rotation angle [°]

360

- parts. For using on moving parts, select the robotic cable
- *2 Actuator cable is equipped with a lock and sensor. *3 Fix the motor cable protruding from the actuator to keep it unmovable. For details about fixing method, refer to Wiring/Cables in the Electric Actuators Precautions.

8 I/O cable length [m]*1, Communication plug

Nil	Without cable (Without communication plug connector)*2
1	1.5
3	3
5	5
S	Straight type communication plug connector*2
Т	T-branch type communication plug connector*2

*1 When "Without controller" is selected for controller types, I/O cable cannot be selected. Refer to page 568 if I/O cable for LECP6 is required.

*2 For the LECPMJ, only "Nil", "S" and "T" are selectable since I/O cable is not included.

9 Controller mounting

Nil	Screw mounting	
D DIN rail mounting*		
DIN rail is not included. Order it separately		

DIN rail is not included. Order it separately

3 Max. rotating torgue [N·m]

Symbol	Туре	LER10	LER30	LER50
K	High torque	0.32	1.2	10
J	Basic	0.22	0.8	6.6

RoHS

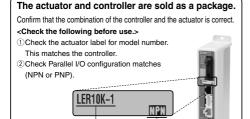
6 Actuator cable length [m]

Nil	Without cable	8	8*
1	1.5	Α	10*
3	3	В	15*
5	5	С	20*

* Produced upon receipt of order (Robotic cable only) Refer to the specifications Note 3) on page 417.

▲Caution

[CE-compliant products]


- 1 EMC compliance was tested by combining the electric actuator LER series and the controller LEC series
 - The EMC depends on the configuration of the customer's control panel and the relationship with other electrical equipment and wiring. Therefore, conformity to the EMC directive can-not be certified for SMC components incorporated into the customer's equipment under actual operating conditions. As a result, it is necessary for the customer to verify conformity to the EMC directive for the machinery and equipment as a whole
- 2 CC-Link direct input type (LECPMJ) is not CEcompliant

[UL-compliant products]

When conformity to UL is required, the electric actuator and controller should be used with a UL1310 Class 2 power supply.

Compatible Controller

Туре	Step data input type	CC-Link direct input type			
Series	LECP6	LECPMJ			
Features	Value (Step data) input Standard controller	CC-Link direct input			
Compatible motor	Step motor (Servo/24 VDC)				
Maximum number of step data	64 points				
Power supply voltage	24 VDC				
Reference page	Page 560 Page 600				

2

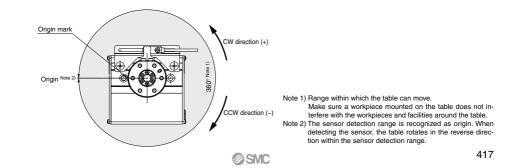
(Î) * Refer to the operation manual for using the products Please download it via our website, http://www.smcworld.com

Table Rotation Angle Range

Specifications

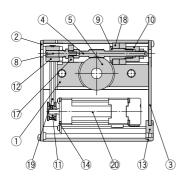
Step Motor (Servo/24 VDC)

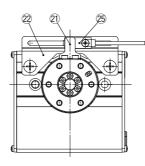
		del	LER 10K	LER[]10J	LER _{30K}		LER_50K	LER 50J
	Rotation angl				36	60		
		range [°] Note 9)		±2000000				
	Max. rotating		0.32	0.22	1.2	0.8	10	6.6
				0.09 to 0.11	0.48 to 0.60	0.32 to 0.40	4.0 to 5.0	2.6 to 3.3
	Max. moment of inertia [kg·m ²] Note 2) Note 3)		0.0040	0.0018	0.035	0.015	0.13	0.05
		[°/sec] Note 2) Note 3)	20 to 280	30 to 420	20 to 280		20 to 280	30 to 420
ß	Pushing spee		20	30	20	30	20	30
Ē	Max. angular accelerati	on/deceleration [°/sec ²] Note 2)			30	00		
g	Backlash [°]	Basic type	+	13		±C		
5		High precision type	±0.3			±C		
ğ	Positioning	Basic type	±0.05			±0	.05	
ž		High precision type			±0.03			
ctuator specifications	Lost motion	Basic type	0.3 or less		0.3 or less			
5	[°] Note 4)	High precision type	0.0 0				0.2 or less	
٩	Impact/Vibration resistance [m/s ²] Note 5)		150/30					
	Actuation type		Special worm gear + Belt drive					
		frequency [c.p.m]	60					
		perature range [°C]	5 to 40					
	Operating hun	nidity range [%RH]			r less (No			
	Weight [kg]	Basic type	0.			.2		.3
	0 . 0,	High precision type		55		.3		.5
ŝ	Motor size			20		28		42
₫	Motor type				o motor (S			
8	Encoder			crementa	al A/B phase (800 pulse/rotation)			
5		return to origin)/Input circuit						
ğ		return to origin)/Input point						
ő	Power supply		<u> </u>		24 VD0			
5		nption [W] Note 6)	1			2		4
Electric specifications		ption when operating [W] Note 7)		7		2		3
-	Max. instantaneous	power consumption Note 8)	1	4	4	2	5	7

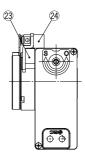

Note 1) Pushing force accuracy is LER10: ±30% (F.S.), LER30: ±25% (F.S.), LER50: ±20% (F.S.). Note 2) The angular acceleration, angular deceleration and angular speed may fluctuate due to variations in the moment of inertia. Refer to "Moment of Inertia—Angular Acceleration", Deceleration, Effective Torque—Angular Speed" graphs on pages 406 and 407 for confirmation.

- Note 3) The speed and force may change depending on the cable length, load and mounting conditions. Furthermore, if the cable length exceeds 5 m, then it will decrease by up to 10% for each 5 m. (At 15 m: Reduced by up to 20%)
- Note 4) A reference value for correcting an error in reciprocal operation.
- Note 5) Impact resistance: No malfunction occurred when the slide table was tested with a drop tester in both an axial direction and a perpendicular direction to the lead screw. (Test was performed with the actuator in the initial state.) Vibration resistance: No malfunction occurred in a test ranging between 45 to 2000 Hz.

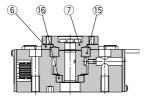
Test was performed in both an axial direction and a perpendicular direction to the lead screw. (Test was performed with the actuator in the initial state.)

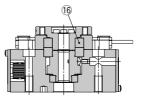

- Note 6) The power consumption (including the controller) is for when the actuator is operating. Note 7) The standby power consumption when operating (including the controller) is for when the actuator is stopped in the set position during operation.
- Note 8) The maximum instantaneous power consumption (including the controller) is for when the actuator is operating. This value can be used for the selection of the power supply. Note 9) The angle displayed on the monitor is automatically reset to 0° every 360°.
 - To set an angle (position), use the "Relative" movement mode.


If an angle of 360° or more is set using the "Absolute" movement mode, the correct operation cannot be performed.



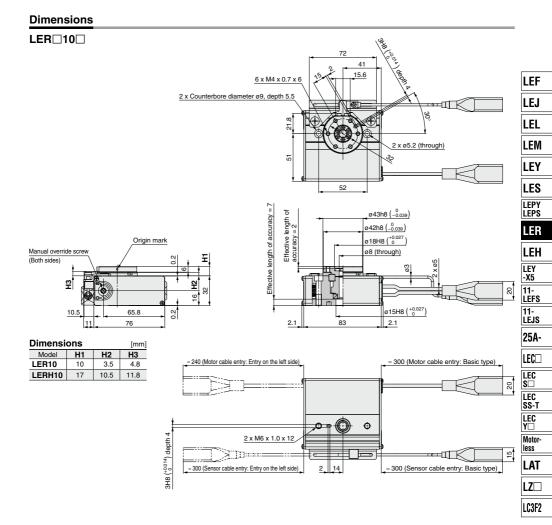
LEF LEJ LEL LEM LEY LES LEPY LEPS .ER LEH LEY ·X5 11-**L**ÉFS 11-ĹĖJS 25A-LEC LEC ls⊓ LEC SS-T LEC Motor less LAT LZ LC3F2


Construction

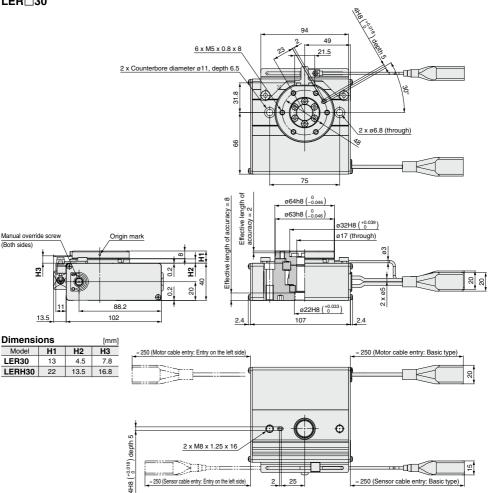

Basic type

Component Parts

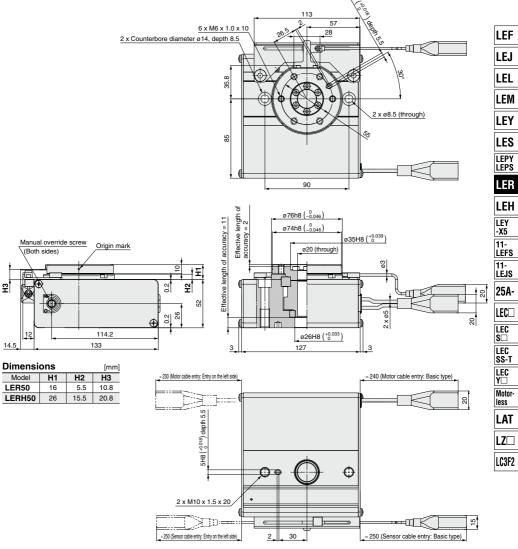
00	пропент Ра	1115		
No.	Description		Material	Note
1	Body		Aluminum alloy	Anodized
2	Side plate A		Aluminum alloy	Anodized
3	Side plate B		Aluminum alloy	Anodized
4	Worm screw		Stainless steel	Heat treated + Specially treated
5	Worm wheel		Stainless steel	Heat treated + Specially treated
6	Bearing cover		Aluminum alloy	Anodized
7	Table		Aluminum alloy	
8	Joint		Stainless steel	
9	Bearing holder		Aluminum alloy	
10	Bearing stopper		Aluminum alloy	
11	Pulley A		Aluminum alloy	
12	Pulley B		Aluminum alloy	
13	Grommet		NBR	
14	Motor plate		Carbon steel	
15	Basic type	Deep groove ball bearing		
15	High precision type	Special ball bearing	_	
16	Deep groove ball bearing		_	
17	Deep groove	ball bearing	_	
18	Deep groove	ball bearing	_	
19	Belt		_	
20	Step motor (S	Servo/24 VDC)	_	


High precision type

Component Parts (360° type)


No.	Description	Material	Note
21	Proximity dog	Stainless steel	
22	Sensor holder	Carbon steel	Chromate treated
23	Sensor holder spacer	Aluminum alloy	Anodized (High precision type can be used only)
24	Square nut	Aluminum alloy	
25	Proximity sensor assembly	_	

Dimensions


LER 30

Continuous Rotation Specification Electric Rotary Table LER Series Step Motor (Servo/24 VDC)

LER Series Electric Rotary Table/ Specific Product Precautions 1

Be sure to read this before handling the products. Refer to back page 50 for Safety Instructions and pages 3 to 8 for Electric Actuator Precautions.

Design/Selection

MWarning

- If the operating conditions involve load fluctuations, ascending/descending movements, or changes in the frictional resistance, ensure that safety measures are in place to prevent injury to the operator or damage to the equipment.
 Failure to provide such measures could accelerate the operation speed, which may be hazardous to humans, machinery, and other equipment.
- 2. Power failure may result in a decrease in the pushing force; ensure that safety measures are in place to prevent injury to the operator or damage to the equipment. When the product is used for clamping, the clamping force could be decreased due to power failure, potentially creating a hazardous situation in which the workpiece is released.

≜Caution

- If the operating speed is set too fast and the moment of inertia is too large, the product could be damaged. Set appropriate product operating conditions in accordance with the model selection procedure.
- 2. If more precise repeatability of the rotation angle is required, use the product with an external stopper, with repeatability of ±0.01° (180° and 90° with adjustment of ±2°) or by directly stopping the workpiece using an external object utilizing the pushing operation.
- 3. When using the electric rotary table with an external stopper, or by directly stopping the load externally, be sure to set to [Pushing operation].

Also, ensure that the workpiece is not impacted externally during the positioning operation or in the range of positioning operation.

Mounting

Warning

1. Do not drop or hit the electric rotary table to avoid scratching and denting the mounting surfaces.

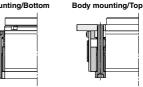
Even slight deformation can cause the deterioration of accuracy and operation failure.

2. When mounting the load, tighten the mounting screws within the specified torque range.

Tightening the screws with a higher torque than recommended may cause malfunction, whilst the tightening with a lower torque can cause the displacement of the mounting position.

Mounting the workpiece to the electric rotary table

The load should be mounted with the torque specified in the following table by screwing the screw into the mounting female thread. If long screws are used, they can interfere with the body and cause a malfunction.


Model	Screw size	Thread length [mm]	Max. tightening torque [N·m]
LER 10	M4 x 0.7	6	1.4
LER 30	M5 x 0.8	8	3.0
LER 50	M6 x 1	10	5.0

cause the displacement of the mounting position.

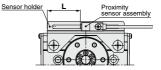
3. When mounting the electric rotary table, tighten the mounting screws within the specified torque range. Tightening the screws with a higher torque than recommended may cause malfunction, whilst the tightening with a lower torque can Mounting

Marning Through-hole mounting

Body mounting/Bottom

Model	Screw size	Max. tightening torque [N·m]
LERD10	M5 x 0.8	3.0
LER 30	M6 x 1	5.0
LER 50	M8 x 1.25	12.0

Body tapped mounting



Model	Screw size	Max. tightening torque [N·m]	Max. screw-in depth [mm]
LERD10	M6 x 1	5.0	12
LER 30	M8 x 1.25	12.0	16
LER 50	M10 x 1.5	25.0	20

- The mounting face has holes and slots for positioning. Use them for accurate positioning of the electric rotary table if required.
- 5. If it is necessary to operate the electric rotary table when it is not energized, use the manual override screws. When it is necessary to operate the product by the manual override

screws, check the position of the manual override screws of the product, and leave necessary space. Do not apply excessive torque to the manual override screws. This may lead to damage and malfunction.

6. The 360° type proximity sensor for return to origin can be changed ±30°. When changing the position of the proximity sensor for return to origin, tighten the screws with a tightening torque of 0.6±0.1 [N·m].

SMC

Model	L [mm] (Initial setting) Cable entry: Basic type/Entry on the left side (Between the sensor holder end face and proximity sensor end face)
LER[]10-1	31/31
LER[]30-1	42/42
LER[50-1	51.5/51.5

LER Series **Electric Rotary Table/ Specific Prodúct Precautions 2**

Be sure to read this before handling the products. Refer to back page 50 for Safety Instructions and pages 3 to 8 for Electric Actuator Precautions.

Handling

▲ Caution

- 1. When an external guide is used, connect it in such a way that no impact or load is applied to it. Use a free moving connector (such as a coupling).
- 2. The moving force should be the initial value (100%). If the moving force is set below the initial value, there may be variation in the cycle time, or an alarm may be generated.

3. INP output signal

1) Positioning operation

- When the product comes within the set range by step data [In position], the INP output signal will turn on, Initial value: Set to [0.50] or higher.
- 2) Pushing operation

When the effective force exceeds the [Trigger LV] value (including force during operation), the INP output signal will turn on

The [Trigger LV] should be set between 40% and [Pushing forcel.

- a) To ensure that the clamping and external stop is achieved by [Pushing force], it is recommended that the [Trigger LV] be set to the same value as the [Pushing force].
- b) When the [Trigger LV] and [Pushing force] are set to be less than the lower limit of the specified range, there is the possibility that the INP output signal will be switched on from the pushing operation start position.
- < Pushing force and trigger LV range >

Model	Set value of pushing force [%]	Set value of Trigger LV [%]
LER	40 to 50	40 to 50

4. When using the electric rotary table with an external stopper, or by directly stopping the load externally. be sure to set to [Pushing operation].

Also, ensure that the workpiece is not impacted externally during the positioning operation or in the range of positioning operation.

If the product is used in the positioning operation mode, there may be galling or other problems when the product/workpiece comes into contact with the external stopper or external object.

5. When the table is stopped by the pushing operation mode (stopping/clamping), set the product to a position of at least 1° away from the workpiece. (This position is referred to as the pushing start position.) If the pushing start position (stopping or clamping) is set to the same position as the external stop position, the following

alarms may be generated and operation may become unstable.

- a. "Posn failed" alarm is generated. It is not possible to reach the pushing start position within the target time.
- b. "Pushing ALM" alarm is generated. The product is pushed back from a pushing start posi-

tion after starting to push.

- c. "Deviation over flow" alarm is generated. Displacement exceeding the specified value is generated at the pushing start position.
- 6. There is no backlash effect when the product is stopped externally by pushing operation. For the return to origin, the origin position is set by the pushing

operation.

Handling

∧ Caution

7. For the specification with an external stopper, an angle adjustment bolt is provided as standard.

The rotation angle adjustment range is ±2° from the angle rotation end

If the angle adjustment range is exceeded, the rotation angle may change due to insufficient strength of the external stopper. One revolution of the adjustment bolt is approximately equal to 1° of rotation

- 8. In case that gravity is added to the workpiece along the rotation direction when product is mounted vertically, the workpiece may fall down when "SVON" signal is OFF or EMG is not energizing.
- 9. When mounting the product, keep a 40 mm or longer diameter for bends in the motor cable.

Maintenance

//\Danger

1. The high precision type bearing is assembled by pressing into position. It is not possible to disassemble it.