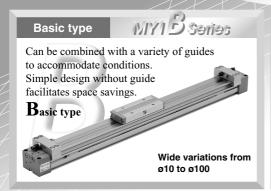
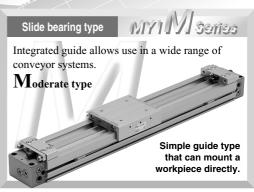
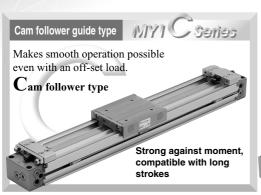

Mechanically Jointed Rodless Cylinder

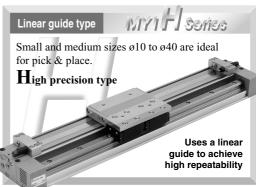
MY1 Series

Five types of guide allow a wide range of selections.




D-□


-X□


Mechanically Jointed Dodlogs Cylinder Rodless Cylinder

Series

Stroke availability

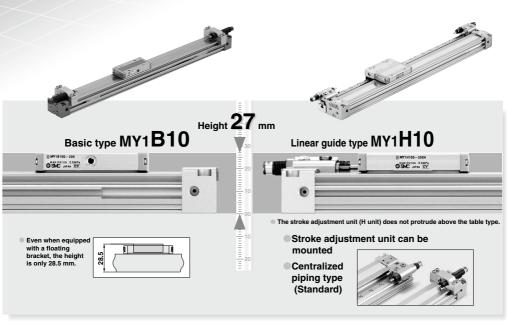
Strokes may be selected in increments of 1 mm.

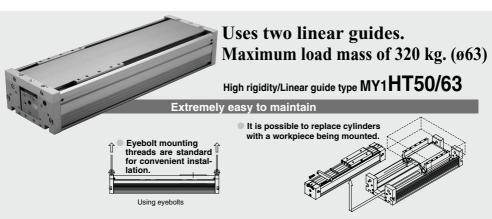
Stroke adjustment unit

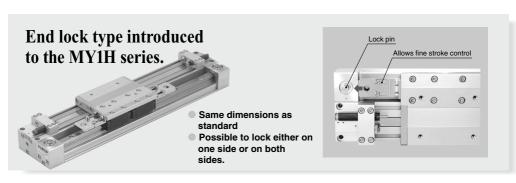
Strokes can be adjusted either at one side or both sides.

- · Adjustment bolt
- Low load shock absorber + Adjustment bolt (L unit)
- · Heavy-loaded shock absorber
- + Adjustment bolt (H unit)

Centralized piping


Piping ports are concentrated at one side.


Side support


Side support prevents a cylinder tube from sagging in long stroke applications.

Interchangeability

The bodies and workpiece mountings are interchangeable between the MY1M and MY1C series.

D-□

-X□

Technical Data

MY1B

MY1H

MY1B MY1M MY1C MY1H

MY1 HT

MY1

MY2C

MY2 H/HT

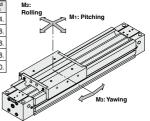
MY3A

MY3B

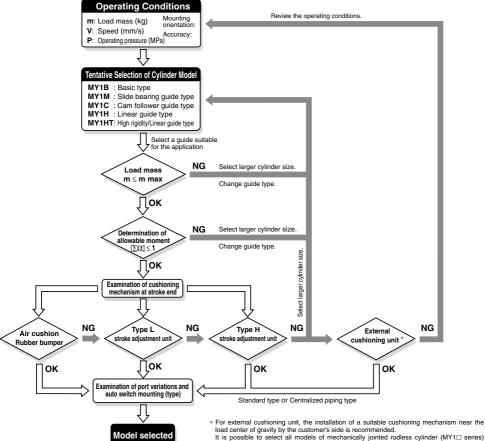
MY3M

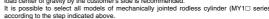
MY1 Series **Model Selection 1**

Following are the steps for selecting the most suitable MY1 series to your application.


Standards for Tentative Model Selection

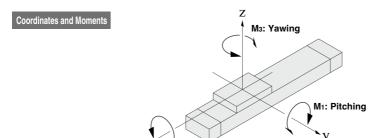
Cylinder model	Guide type	type Standards for guide selection						
MY1B	Basic type	Guaranteed accuracy not required, generally combined with separate guide	Refer to P. 1234.					
MY1M	Slide bearing guide type	Slide table accuracy approx. ±0.12 mm (2)	Refer to P. 1258.					
MY1C	Cam follower guide type	Slide table accuracy approx. ±0.05 mm (2)	Refer to P. 1278.					
MY1H	Linear guide type	Slide table accuracy of ±0.05 mm or less required (2)	Refer to P. 1298.					
MY1HT	High rigidity/Linear guide type	Slide table accuracy of ±0.05 mm or less required (2)	Refer to P. 1320.					


Note 1) These accuracy values for each guide should be used only as a guide during selection. Please contact SMC when guaranteed accuracy for MY1C/MY1H is required.

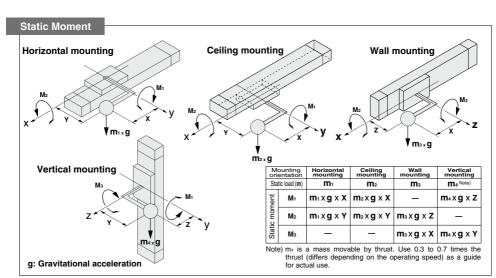

Note 2) "Accuracy" here means displacement of the slide table (at stroke end) when 50% of the allowable

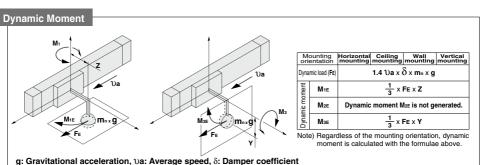
moment shown in the catalog is applied. (reference value).

Selection Flow Chart



Refer to the separate operation manual for further details. If you have any questions, please contact SMC.




Types of Moment Applied to Rodless Cylinders

Multiple moments may be generated depending on the mounting orientation, load, and position of the center of gravity.

M₂: Rolling

SIVIC

1229

D-□

-X□

Technical Data

MY1B MY1H

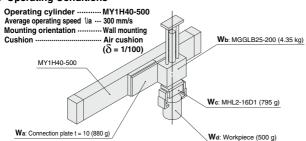
MY1B

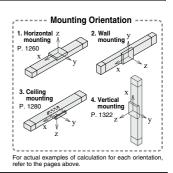
MY1M MY1C

MY1H

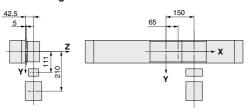
MY1 □W

MY2C MY2 H/HT MY3A


MY3B MY3M


MY1 Series Model Selection 2

Following are the steps for selecting the most suitable MY1 series to your application.


Calculation of Guide Load Factor

1. Operating Conditions

2. Load Blocking

Mass and Center of Gravity for Each Workpiece

Workpiece no.	Mass	С	Center of gravity				
Wn	m _n	X-axis Xn	Y-axis Yn	Z-axis Zn			
Wa	0.88 kg	65 mm	0 mm	5 mm			
Wb	4.35 kg	150 mm	0 mm	42.5 mm			
Wc	W c 0.795 kg		111 mm	42.5 mm			
Wd	0.5 kg	150 mm	210 mm	42.5 mm			

n = a, b, c, d

3. Composite Center of Gravity Calculation

$$\mathbf{m}_3 = \Sigma m_n$$

= 0.88 + 4.35 + 0.795 + 0.5 = **6.525 kg**

$$X = \frac{1}{m_3} \times \Sigma(m_n \times x_n)$$

$$= \frac{1}{6.525} (0.88 \times 65 + 4.35 \times 150 + 0.795 \times 150 + 0.5 \times 150) = 138.5 \text{ mm}$$

Y =
$$\frac{1}{m_3}$$
 x Σ (m₀ x y_n)
= $\frac{1}{6.525}$ (0.88 x 0 + 4.35 x 0 + 0.795 x 111 + 0.5 x 210) = **29.6 mm**

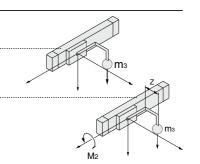
$$Z = \frac{1}{m_3} \times \sum (m_n \times z_n)$$

$$= \frac{1}{6.525} (0.88 \times 5 + 4.35 \times 42.5 + 0.795 \times 42.5 + 0.5 \times 42.5) = 37.4 \text{ mm}$$

4. Calculation of Load Factor for Static Load

m₃: Mass

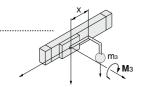
 $m_3 \max$ (from (1) of graph MY1H/ m_3) = 50 (kg)


Load factor $\alpha_1 = m_3/m_3 \max = 6.525/50 = 0.13$

M2: Moment

 M_2 max (from (2) of graph MY1H/ M_2) = 50 (N·m)

 $M_2 = m_3 \times g \times Z = 6.525 \times 9.8 \times 37.4 \times 10^{-3} = 2.39 \text{ (N·m)}$


Load factor $\alpha_2 = M_2/M_2 max = 2.39/50 = 0.05$

Ms: Moment

$$M_3 = m_3 \times g \times X = 6.525 \times 9.8 \times 138.5 \times 10^{-3} = 8.86 \text{ (N·m)}$$

Load factor $\alpha_3 = M_3/M_3 \text{ max} = 8.86/38.7 = 0.23$

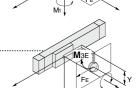
5. Calculation of Load Factor for Dynamic Moment -

Equivalent load FE at impact

Fe = 1.4 Va x
$$\delta$$
 x m x g = 1.4 x 300 x $\frac{1}{100}$ x 6.525 x 9.8 = 268.6 (N)

M1E: Moment

M₁E =
$$\frac{1}{3}$$
 x **F**_E x **Z** = $\frac{1}{3}$ x 268.6 x 37.4 x 10° = 3.35 (N·m)


Load factor O(4 = M1E/M1E max = 3.35/35.9 = 0.09

M3E =
$$\frac{1}{3}$$
 x \mathbf{F}_{E} x $\mathbf{Y} = \frac{1}{3}$ x 268.6 x 29.6 x 10⁻³ = 2.65 (N·m)

Load factor 0.5 = M3E/M3E max = 2.65/27.6 = 0.10

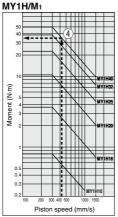
6. Sum and Examination of Guide Load Factors -

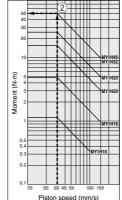
$$\textstyle \sum_{\text{CC}} = \text{CC}_1 + \text{CC}_2 + \text{CC}_3 + \text{CC}_4 + \text{CC}_5 = \textbf{0.60} \leq \textbf{1}$$

The above calculation is within the allowable value, and therefore the selected model can be used.

Select a shock absorber separately.

In an actual calculation, when the sum of guide load factors α in the formula above is more than 1, consider decreasing the speed, increasing the bore size, or changing the product series.


MY1H/M₂


This calculation can be easily made using the "SMC Pneumatics CAD System".

Load Mass

MY1H/m₃ Load mass (kg) Piston speed (mm/s)

Allowable Moment

MY1H/M₃ Moment (N·m) Piston speed (mm/s)

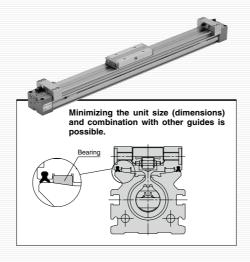
MY1B

MY1H MY1B

MY1M

MY1C MY1H

MY1


MY2C

MY2 H/HT MY3A MY3B

MY3M

D-□

MY1B

MY1H

MY1B MY1M

MY1C

MY1H

MY1 HT MY1 □W

MY2C MY2 H/HT МҮ3А

MY3B MY3M

MY1B Series Prior to Use

Maximum Allowable Moment/Maximum Load Mass

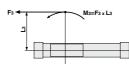
Model	Bore size	Maximum a	allowable moi	ment (N·m)	Maximum load mass (kg)			
Wodei	(mm)	M1	M2	Мз	m1	m ₂	m ₃	
	10	0.8	0.1	0.3	5.0	1.0	0.5	
	16	2.5	0.3	0.8	15	3.0	1.7	
	20	5.0	0.6	1.5	21	4.2	3.0	
MY1B	50	78	9.3	23	70	14	20	
	63	160	19	48	83	16.6	29	
	80	315	37	95	120	24	42	
	100	615	73	184	150	30	60	

The above values are the maximum allowable values for moment and load. Refer to each graph regarding the maximum allowable moment and maximum allowable load for a particular piston speed.

Caution on Design

We recommend installing an external shock absorber when the cylinder is combined with another guide (connection with floating bracket, etc.) and the maximum allowable load is exceeded, or when the operating speed is 1000 to 1500 mm/s for bore sizes ø16, ø50, ø63, ø80 and ø100

Load mass (kg)



Moment (N·m)

<Calculation of guide load factor>

- 1. Maximum allowable load (1), static moment (2), and dynamic moment (3) (at the time of impact with stopper) must be examined for the selection calculations.
 - * To evaluate, use \mathcal{V} a (average speed) for (1) and (2), and \mathcal{V} (collision speed \mathcal{V} = 1.4 \mathcal{V} a) for (3). Calculate mmax for (1) from the maximum allowable load graph (m₁, m₂, m₃) and Mmax for (2) and (3) from the maximum allowable moment graph (M₁, M₂, M₃).

Σ(1) =	moment [M] (1) + Dynamic moment [Me] (2) { Allowable dynamic moment [Memax]
--------	---

Note 1) Moment caused by the load, etc., with cylinder in resting condition.

Note 2) Moment caused by the impact load equivalent at the stroke end (at the time of impact with stopper). Note 3) Depending on the shape of the workpiece, multiple moments may occur. When this happens, the sum of the load factors ($\Sigma \alpha$) is the total of all such moments.

2. Reference formula [Dynamic moment at impact]

Use the following formulae to calculate dynamic moment when taking stopper impact into consideration.

m: Load mass (kg)

Load (N)

FE: Load equivalent to impact (at impact with stopper) (N)

Va: Average speed (mm/s)

M: Static moment (N·m)

 $U = 1.4Ua \text{ (mm/s)} F_E = 1.4Ua \cdot \delta \cdot m \cdot g$ $\therefore \mathbf{M}_{E} = \frac{1}{2}^{\text{Note 5}} F_{E} \cdot L_{1} = 4.57 \text{Va} \delta mL,$

υ: Collision speed (mm/s)

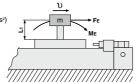
L1: Distance to the load's center of gravity (m)

M_E: Dynamic moment (N⋅m)

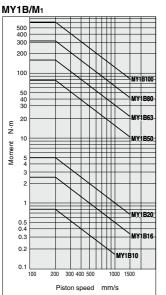
δ: Damper coefficient With rubber bumper = 4/100 (MY1B10, MY1H10) With air cushion = 1/100

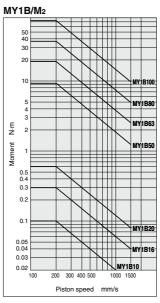
With shock absorber = 1/100 g: Gravitational acceleration (9.8 m/s2)

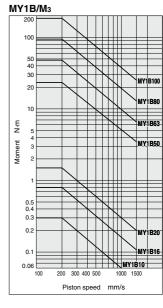
Note 4) 1.4 Vaδ is a dimensionless coefficient for calculating impact force. Note 5) Average load coefficient (= $\frac{1}{3}$): This coefficient is for averaging the maximum load moment at the time of stopper impact according to service life calculations.


3. For detaild selection procedures, refer to pages 1236 and 1237.

Maximum Allowable Moment


Select the moment from within the range of operating limits shown in the graphs. Note that the maximum allowable load value may sometimes be exceeded even within the operating limits shown in the graphs. Therefore, also check the allowable load for the selected conditions


Maximum Load Mass


Select the load from within the range of limits shown in the graphs. Note that the maximum allowable moment value may sometimes be exceeded even within the operating limits shown in the graphs. Therefore, also check the allowable moment for the selected conditions.

Prior to Use MY1B Series

MY1B

MY1H

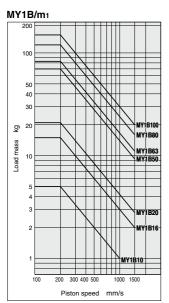
MY1B

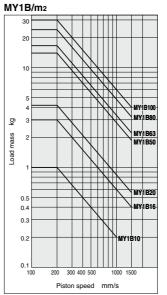
MY1M

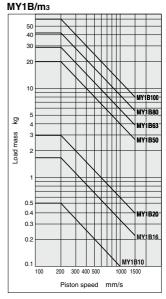
MY1C

MY1H

MY1


HT MY1


□W MY2C MY2 H/HT


MY3A

MY3B

MY3M

Technical Data

D-□

-X□

MY1B Series Model Selection

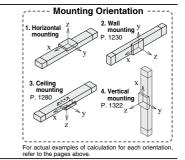
Following are the steps for selecting the most suitable MY1B series to your application.

MY1B50-500

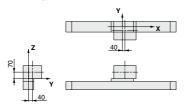
Calculation of Guide Load Factor

W: Workpiece (5 kg)

1. Operating Conditions


Cylinder MY1B50-500

Average operating speed \upalpha a ···· 300 mm/s


Mounting orientation Horizontal mounting

Cushion Air cushion

 $(\delta = 1/100)$

2. Load Blocking

Mass and Center of Gravity for Workpiece

Workpiece		Center of gravity						
no.	Mass m	X -axis	Y-axis	Z -axis				
W	5 kg	40 mm	40 mm	70 mm				

3. Calculation of Load Factor for Static Load

m₁: Mass

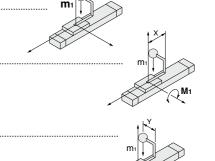
 $m_1 \max$ (from (1) of graph MY1B/ m_1) = 47 (kg).....

Load factor $Ol_1 = m_1/m_1 \max = 5/47 = 0.11$

M₁: Moment

M₁ max (from (2) of graph MY1B/M₁) = 52 (N·m)······

 $M_1 = m_1 \times g \times X = 5 \times 9.8 \times 40 \times 10^{-3} = 1.96 \text{ (N·m)}$


Load factor $CL_2 = M_1/M_1 \text{ max} = 1.96/52 = 0.04$

 M_2 max (from (3) of graph MY1B/ M_2) = 6.2 (N·m)·······

 $M_3 = m_1 \times g \times Y = 5 \times 9.8 \times 40 \times 10^{-3} = 1.96 \text{ (N-m)}$

Load factor $Ol_3 = M_2/M_2 max = 1.96/6.2 = 0.32$

4. Calculation of Load Factor for Dynamic Moment

Equivalent load FE at impact

$$\mathbf{F} = 1.4 \text{ } \mathbf{a} \times \mathbf{b} \times \mathbf{m} \times \mathbf{g} = 1.4 \times 300 \times \frac{1}{100} \times 5 \times 9.8 = 205.8 \text{ (N)}$$

M₁F. Moment

$$\textbf{M}_{1\text{E}} = \frac{1}{3} x \; \textbf{Fe} \; x \; \textbf{Z} = \frac{1}{3} x \; 205.8 \; x \; 70 \; x \; 10^{-3} = 4.81 \; (\text{N} \cdot \text{m})$$

Load factor $CL_4 = M_1E/M_1E max = 4.81/37 = 0.13$

Mar: Moment

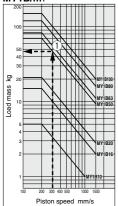
M_{3E} max (from (5) of graph MY1B/M₃ where 1.4 Va = 420 mm/s) = $11.0 \text{ (N·m)} \cdot \cdot \cdot \cdot \cdot \cdot$

Mae =
$$\frac{1}{3}$$
 x Fe x Y = $\frac{1}{3}$ x 205.8 x 40 x 10⁻³ = 2.75 (N·m)

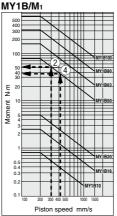
Load factor $OL_5 = M3E/M3E max = 2.75/11.0 = 0.25$

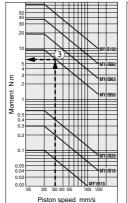
5. Sum and Examination of Guide Load Factors

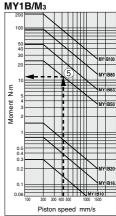
$$\sum \alpha = O(1 + O(2 + O(3 + O(4 + O(5 = 0.85 \le 1$$


The above calculation is within the allowable value, and therefore the selected model can be used. Select a shock absorber separately.

In an actual calculation, when the total sum of guide load factors α in the formula above is more than 1, consider either decreasing the speed, increasing the bore size, or changing the product series. This calculation can be easily made using the "SMC Pneumatics CAD System".


MY1B/M₂


Load Mass


MY1B/m₁

Allowable Moment

MY1B MY1H

MY1B

MY1M MY1C

MY1H MY1

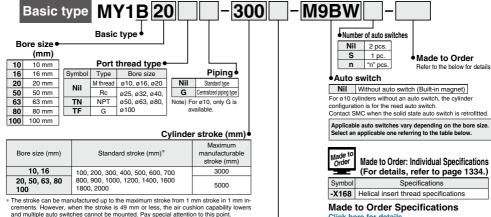
нт MY1 $\square W$

MY2C MY2 H/HT MY3A

MY3B MY3M

D-□

-X□


Mechanically Jointed Rodless Cylinder Basic Type

MY1B Series

Ø10, Ø16, Ø20, Ø50, Ø63, Ø80, Ø100

How to Order

For bore sizes ø25, ø32 and ø40, refer to page 1183.

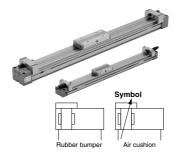
Stroke adjustment unit symbol

Refer to "Stroke adjustment unit" on page 1239

-X168 Helical insert thread specifications Made to Order Specifications

Click here for details

Symbol	Specifications							
-XB11	Long stroke type							
-XB22	Shock absorber soft type RJ series type							
-XC67	NBB rubber lining in dust seal hand							


Applicable Auto Switches/Refer to pages 1575 to 1701 for further information on auto switches.

Also when exceeding a 2000 mm stroke, specify "-XB11" at the end of the model number

For details, refer to the "Made to Order Specifications"

		Electrical	ĕ		L	oad volta	ge	<i> </i>	Auto swit	ch model	Lead	wire I	length	(m)	Pre-wired													
Type	Special function	entry	Indicator Eght	Wiring (Output)	С	OC AC		Perpen		In-line ø10 to ø20 ø50 to ø100	0.5 (Nil)	1 (M)	3 (L)		connector	Applical	ble load											
	Diagnostic indication (2-color indicator)				3-wire (NPN)		5 V 10 V		M9N [Y6	IV** 9A]	M9N** [Y59A]	•	(—)	•	0	0	IC circuit											
				3-wire (PNP)		5 V, 12 V		M9P (Y7)		M9P** [Y7P]	•	● [—]	•	0	0	IC circuit												
switch													2-wire		12 V		M9B [Y6		M9B** [Y59B]	•	● [—]	•	0	0	_			
o swi				3-wire (NPN)		5 1/ 40 1/		M9N\ [Y7N		M9NW** [Y7NW]	•	● [—]	•	0	0	10 :												
te auto		Grommet		Yes	3-wire (PNP)	24 V	5 V, 12 V	_	M9PWV** [Y7PWV]		M9PW** [Y7PW]	•	● [—]	•	0	0	IC circuit	Relay, PLC										
d state																2-wire		12 V		M9B\ [Y7B		M9BW** [Y7BW]	•	● [—]	•	0	0	_
Solid				3-wire (NPN)		5.V. 40.V	,	M9N.A	-]	M9NA*† [—]	0	0	•	0	0	IC circuit												
	Water resistant (2-color indicator)			3-wire (PNP) 2-wire		5 V, 12 V		M9PA	\V *† −]	M9PA** [—]	0	0	•	0	0	io circuit												
					12 V	12 V		M9BA	AV ** -]	M9BA*** [Y7BA]	0	0	•	0	0	_												
Reed auto switch		Grommet	Yes	3-wire (NPN equivalent)	_	5 V	_	A96V	-	A96 Z76	•	_	•	_	_	IC circuit												
Re auto s			No	2-wire	24 V	12 V	100 V 100 V or less	A93V*2 A90V		A93 Z73 A90 Z80	•	-	•	• —	_	— IC circuit	Relay, PLC											

- *1 Water resistant type auto switches can be mounted on the above models, but in such case SMC cannot guarantee water resistance. Consult with SMC regarding water resistant types with the above model numbers.
- *2 1 m type lead wire is only applicable to D-A93.
- * Lead wire length symbols: 0.5 m Nil (Example) M9NW
 - 1 m ······· M (Example) M9NWM
 - 3 m L (Example) M9NWL 5 m Z (Example) M9NWZ
- Solid state auto switches marked with "O" are produced upon receipt of order.
- * Separate switch spacers (BMG2-012) are required to retrofit auto switches (M9 type) on cylinders ø63 to ø100. ** D-M9 D type cannot be mounted on ø50. Select auto switches in brackets
- * There are other applicable auto switches than listed above. For details, refer to page 1333. * For details about auto switches with pre-wired connector, refer to pages 1648 and 1649.
- * Auto switches are shipped together (not assembled).

Specifications

Bore s	size (mm)	10	16	20	50	63	80	100			
Fluid			Air								
Action		Double acting									
Operating	pressure range	0.2 to 0.8 MPa	0.15 to (0.8 MPa		0.1 to 0	.8 MPa				
Proof pr	essure	1.2 MPa									
Ambient and	fluid temperature	5 to 60°C									
Cushior	1	Rubber bumper Air cushion									
Lubricat	tion	Non-lube									
Stroke len	gth tolerance	1000 or less 1001 to 3000				2700 or less ^{+1.8} ₀ , 2701 to 5000 ^{+2.8} ₀					
Piping	Front/Side port	M5 :	¢ 0.8	•	Rc	3/8	Rc	1/2			
Port size	Bottom port		Ø	i4	ø.	10	ø.	18			

Piston Speed

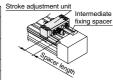
Bore :	size (mm)	10	16	50 to 100				
Without stroke ac	ljustment unit	100 to 500 mm/s	100 to 1000 mm/s					
Stroke	A unit	100 to 200 mm/s	100 to 100	_				
adjustment unit	L unit and H unit	100 to 1000 mm/s	ı	100 to 1500 mm/s (2)	_			

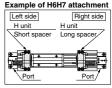
Note 1) Be aware that when the stroke adjustment range is increased by manipulating the adjustment bolt, the air cushion capacity decreases. Also, when exceeding the air cushion stroke ranges on page 1242, the piston speed should be 100 to 200 mm per second.

Note 2) The piston speed is 100 to 1000 mm/s for centralized piping. Note 3) Use at a speed within the absorption capacity range. Refer to page 1241.

Stroke Adjustment Unit Specifications

Bore size (mm)		1	10 16				20		
Unit symbol		Α	Н	Α	Α	L	Н		
Configuration Shock absorber mo	odel	With adjustment bolt	RB 0805 + with adjustment bolt	With adjustment bolt	With adjustment bolt	RB 0806 + with adjustment bolt	RB 1007 + with adjustment bolt		
Stroke adjustment	Without spacer	0 to -5		0 to -5.6	0 to -6				
range by intermediate fixing spacer (mm)	With short spacer	_	_	−5.6 to −11.2	−6 to −12				
lixing spacer (lillin)	With long spacer	_	_	−11.2 to −16.8					


Note) Intermediate fixing spacer is not available for ø10.


* Stroke adjustment range is applicable for one side when mounted on a cylinder.

Stroke Adjustment Unit Symbol

_	Stroke Adjustinent Onit Symbol												
ſ	$\overline{}$		Right side stroke adjustment unit										
			Without	A: With adjustment bolt			L: With low load shock absorber + Adjustment bolt			H: With high load shock absorber + Adjustment bolt			
		unit		With short spacer	With long spacer		With short spacer	With long spacer		With short spacer	With long spacer		
4	With a	hout unit	Nil	SA	SA6	SA7	SL	SL6	SL7	SH	SH6	SH7	
ŀ	A: With a	A: With adjustment bolt		Α	AA6	AA7	AL	AL6	AL7	AH	AH6	AH7	
	A: With a	With short spacer	A6S	A6A	A6	A6A7	A6L	A6L6	A6L7	A6H	A6H6	A6H7	
1	<u> </u>	With long spacer	A7S	A7A	A7A6	A7	A7L	A7L6	A7L7	A7H	A7H6	A7H7	
1		oad shock absorber +	LS	LA	LA6	LA7	L	LL6	LL7	LH	LH6	LH7	
1	Adjustment bolt	With short spacer	L6S	L6A	L6A6	L6A7	L6L	L6	L6L7	L6H	L6H6	L6H7	
Left side stroke		With long spacer	L7S	L7A	L7A6	L7A7	L7L	L7L6	L7	L7H	L7H6	L7H7	
		load shock absorber +	HS	HA	HA6	HA7	HL	HL6	HL7	Н	HH6	HH7	
		With short spacer	H6S	H6A	H6A6	H6A7	H6L	H6L6	H6L7	Н6Н	H6	Н6Н7	
	bolt	With long spacer	H7S	H7A	H7A6	H7A7	H7L	H7L6	H7L7	H7H	H7H6	H7	

Stroke adjustment unit mounting diagram

Shock Absorbers for L and H Units

Model	Stroke adjustment	Bore size (mm)			
Wiodei	unit	10	20		
Standard (Shock absorber/	L	_	RB0806		
RB series)	Н	RB0805	RB1007		
Shock absorber/ soft type RJ series	L	_	RJ0806H		
mounted (-XB22)	Н	RJ0805	RJ1007H		

- * The shock absorber service life is different from that of the MY1B cylinder depending on operating conditions. Refer to the RB Series Specific Product Precautions for the replacement period.
- Mounted shock absorber soft type RJ series (-XB22) is made to order specifications. For details, refer to page 1752.

Shock Absorber Specifications

опоситивостист оргонизации				
Model		RB 0805	RB 0806	RB 1007
Max. energy absorp	1.0	2.9	5.9	
Stroke absorption (mm)		5	6	7
Max. collision speed (mm/s)		1000	1500	1500
Max. operating frequency (cycle/min)		80	80	70
Carina force (N)	Extended	1.96	1.96	4.22
Spring force (N) Retracted		3.83	4.22	6.86
Operating temperat	ure range (°C)		5 to 60	

^{*} The shock absorber service life is different from that of the MY1B cylinder depending on operating conditions. Refer to the RB series Specific Product Precautions for the replacement period.

D-□ -X□

MY1B MY1H

MY1B

MY1M MY1C MY1H MY1 нт MY1 $\square W$

MY2C

MY2

H/HT

MY3A MY3B MY3M

^{*} Spacers are used to fix the stroke adjustment unit at an intermediate stroke position.

Theoretical Output

								(N)
Bore size	Piston area	Operating pressure (MPa)						
(mm)	(mm²)	0.2	0.3	0.4	0.5	0.6	0.7	0.8
10	78	15	23	31	39	46	54	62
16	200	40	60	80	100	120	140	160
20	314	62	94	125	157	188	219	251
50	1962	392	588	784	981	1177	1373	1569
63	3115	623	934	1246	1557	1869	2180	2492
80	5024	1004	1507	2009	2512	3014	3516	4019
100	7850	1570	2355	3140	3925	4710	5495	6280

Note) Theoretical output (N) = Pressure (MPa) x Piston area (mm2)

Weight

							(kg)
Bore size	Basic	Weight of moving		Stroke adjustment unit weight (per unit)			
(mm)	Woigin	50 mm of stroke	parts	Type A and B	A unit weight	L unit weight	H unit weight
10	0.15	0.04	0.03	0.003	0.01	_	0.02
16	0.61	0.06	0.07	0.01	0.04	_	_
20	1.06	0.10	0.14	0.02	0.05	0.05	0.10
50	7.78	0.44	1.40	0.04	_	_	_
63	13.10	0.70	2.20	0.08	_		_
80	20.70	1.18	4.80	0.17	_	_	_
100	35.70	1.97	8.20	0.17	_	_	_

Stroke adjustment unit Intermediate

fixing spacer

Calculation: (Example) MY1B20-300A

- Basic weight ·1.06 kg Cylinder stroke ----------300 stroke
- Additional weight -----··0.10/50 stroke 1.06 + 0.10 x 300/50 + 0.05 x 2 ≅ 2.17 kg
- Weight of A unit -----1.76 kg

Option

Stroke Adjustment Unit Part No.

Bore size 10 10 mm 16 16 mm

20

20 mm Note) Stroke adjustment unit is not available for ø50, ø63, ø80 and ø100.

	•	JIIIC 110. •
Symbol	Stroke adjustment unit	Mounting position
A1	A unit	Left
A2	A unit	Right
L1	L unit	Left
L2	L unit	Right
H1	H unit	Left
H2	ri utilit	Right

Note 1) Refer to page 1239 for details about adjustment range.

Note 2) A and H unit only for ø10, A unit only

for ø16

7[Long spacer

Unit no

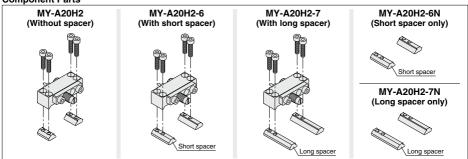
 Spacer delivery type Nil Unit installed Spacer only

Intermediate fixing space

Without spacer

Short spacer

Nil


6□

* Spacers are used to fix the stroke adjustment unit at an intermediate stroke position.

* Spacers are shipped for a set of two

Note) Intermediate fixing spacer is not available for ø10.

Component Parts

Side Support Part No.

Type Bore size (mm)	10	16	20	50	63	80	100
Side support A	MY-S10A	MY-S16A	MY-S20A	MY-S32A	MY-S50A	MY-S	S63A
Side support B	MY-S10B	MY-S16B	MY-S20B	MY-S32B	MY-S50B	MY-S	S63B

For details about dimensions, etc., refer to page 1252

A set of side supports consists of a left support and a right support.

Cushion Capacity

Cushion Selection

<Rubber bumper>

Rubber bumpers are a standard feature on MY1B10.

Since the stroke absorption of rubber bumpers is short, when adjusting the stroke with an A unit, install an external shock absorber.

The load and speed range which can be absorbed by a rubber bumper is inside the rubber bumper limit line of the graph.

<Air cushion>

Air cushions are a standard feature on mechanically jointed rodless cylinders. (Except Ø10.)

The air cushion mechanism is incorporated to prevent excessive impact of the piston at the stroke end during high speed operation. The purpose of air cushion, thus, is not to decelerate the piston near the stroke end.

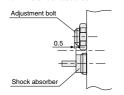
The ranges of load and speed that air cushions can absorb are within the air cushion limit lines shown in the graphs.

<Stroke adjustment unit with shock absorber>

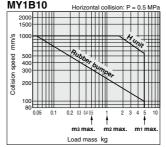
Use this unit when operating with a load or speed exceeding the air cushion limit line, or when cushioning is required outside of the effective air cushion stroke range due to stroke adjustment.

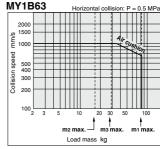
L unit

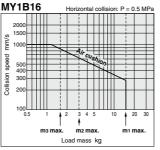
Use this unit when cushioning is necessary outside of the effective air cushion range even if the load and speed are within the air cushion limit line, or when the cyl-inder is operated in a load and speed range above the air cushion limit line and below the L unit limit line.

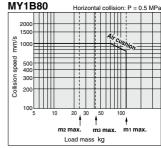

H unit

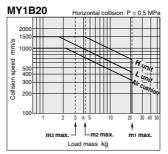
Use this unit when the cylinder is operated in a load and speed range above the L unit limit line and below the H unit limit line.

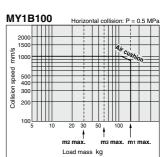

Refer to the figure below when using the adjustment bolt to perform stroke adjustment.

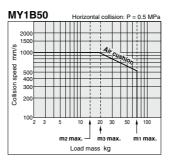

When the effective stroke of the shock absorber decreases as a result of stroke adjustment, the absorption capacity decreases dramatically. Secure the adjustment bolt at the position where it protrudes approximately 0.5 mm from the shock absorber.




Do not use a shock absorber together with air cushion.


Absorption Capacity of Rubber Bumper, Air Cushion and Stroke Adjustment Units





D
-X

Technical
Data

MY1B

MY1H

MY1B

MY1M

MY1C

MY1H

MY1

MY1

 $\square W$

MY2C

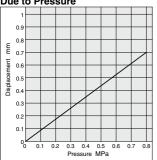
H/HT

MY3A

MY3B

MY3N

нт


Cushion Capacity

Air Cushion Stroke

	()
Bore size (mm)	Cushion stroke
16	12
20	15
50	30
63	37
80	40
100	40

(mm)

Rubber Bumper (Ø10 only) Positive Stroke from One End Due to Pressure

Tightening Torque for Stroke Adjustment Unit Holding Bolts (N·m)

Bore size (mm)	Unit	Tightening torque
10	Α	0.4
10	Н	0.4
16	Α	0.7
	Α	
20	L	1.8
	Н	

Tightening Torque for Stroke Adjustment Unit Lock Plate Holding Bolts (N-m)

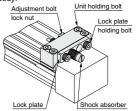
	-	()
Bore size (mm)	Unit	Tightening torque
20	Н	1.2

Calculation of Absorbed Energy for Stroke Adjustment Unit with Shock Absorber

			(14:111)
	Horizontal collision	Vertical (Downward)	Vertical (Upward)
Type of impact	ν	D S S S S S S S S S	s
Kinetic energy E1		1/2 m·V²	
Thrust energy E2	F⋅s	Fs + m·g·s	Fs – m·g·s
Absorbed energy E		E1 + E2	

- Symbol
- 1): Speed of impact object (m/s)
- F: Cylinder thrust (N)
- s: Shock absorber stroke (m)
- m: Mass of impact object (kg)
- g: Gravitational acceleration (9.8 m/s²)

Note) The speed of the impact object is measured at the time of impact with the shock absorber.


⚠Precautions

Be sure to read this before handling the products. Refer to back page 50 for Safety Instructions and pages 3 to 12 for Actuator and Auto Switch Precautions.

⚠ Caution

Use caution not to get your hands caught in the unit.

 When using a product with stroke adjustment unit, the space between the slide table (slider) and the stroke adjustment unit becomes narrow at the stroke end, causing a danger of hands getting caught. Install a protective cover to prevent direct contact with the human body.

<Fastening of unit>

The unit can be secured by evenly tightening the four unit holding bolts.

⚠ Caution

Do not operate with the stroke adjustment unit fixed in an intermediate position.

When the stroke adjustment unit is fixed in an intermediate position, slippage can occur depending on the amount of energy released at the time of an impact. In such cases, as a stroke adjustment unit with the spacer for intermediate securing is available, it is recommended to use it.

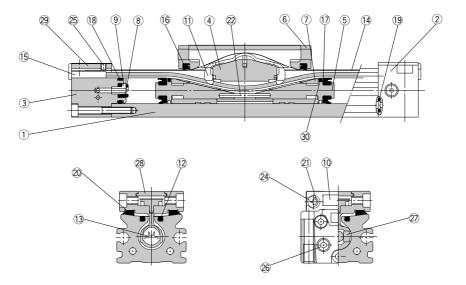
(Except ø10)

For other lengths, please consult with SMC (Refer to "Tightening Torque for Stroke Adjustment Unit Holding Bolts".)

<Stroke adjustment with adjustment bolt-Loosen the adjustment bolt lock nut, and adjust the stroke from the lock plate side using a hexagon wrench. Retighten the lock nut.

<Stroke adjustment with shock absorber>

Loosen the two lock plate holding bolts, turn the shock absorber and adjust the stroke. Then, uniformly tighten the lock plate holding bolts to secure the shock absorber.


Take care not to over-tighten the holding bolts. (Except ø10 and ø20 L unit.) (Refer to "Tightening Torque for Stroke Adjustment Unit Lock Plate Holding Bolts".)

Although the lock plate may slightly bend due to tightening of the lock plate holding bolt, this does not a affect the shock

absorber and locking function.

Construction: ø10

Centralized piping type: MY1B10G

Component Parts

No.	Description	Material	Note
1	Cylinder tube	Aluminum alloy	Hard anodized
2	Head cover WR	Aluminum alloy	Painted
3	Head cover WL	Aluminum alloy	Painted
4	Piston yoke	Aluminum alloy	Hard anodized
5	Piston	Aluminum alloy	Chromated
6	End Cover	Special resin	
7	Wear ring	Special resin	
8	Bumper	Polyurethane rubber	
9	Holder	Stainless steel	
10	Stopper	Carbon steel	Nickel plated
11	Belt separator	Special resin	
12	Seal magnet	Rubber magnet	

No.	Description	Material	Note
15	Belt clamp	Special resin	
20	Bearing	Special resin	
21	Spacer	Chromium molybdenum steel	Nickel plated
22	Spring pin	Stainless steel	
23	Hexagon socket head cap screw	Chromium molybdenum steel	Chromated
24	Round binding head screw	Carbon steel	Chromated
25	Slotted set screw	Carbon steel	Black zinc chromated
26	Hexagon socket head plug	Carbon steel	Chromated
27	Magnet	_	
28	Top plate	Stainless steel	
29	Head plate	Stainless steel	
30	Lube-retainer	Special resin	

Replacement Part: Seal Kit

	MY10-16A-Stroke
44 Dunkanal hand 4 1	
14 Dust sear band	MY10-16B-Stroke
16 Scraper 2	
17 Piston seal 2	MY1B10-PS
18 Tube gasket 2	WITTE TO-1 3
19 O-ring 4	

* Seal kit includes (1), (2), (3) and (3).

Seal kit includes a grease pack (10 g).

When (3) and (4) are shipped independently, a grease pack is included. (10 g per 1000 strokes)

Order with the following part number when only the grease pack is needed.

grease pack is needed.

Grease pack part number: GR-S-010 (10 g), GR-S-020 (20 g)

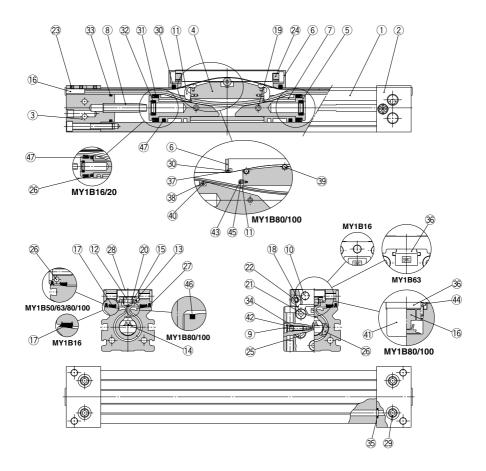
D
-X

Technical Data

MY1B

MY1H

MY1M
MY1C
MY1H
MY1H
MY1
MY1
MY1
MY1
MY1


MY2C MY2 H/HT MY3A MY3B

MY1B Series

Construction: Ø16, Ø20, Ø50 to Ø100

MY1B16, 20, 50 to 100

MY1B16, 20, 50 to 100

Component Parts

	inponent i arts		
No.	Description	Material	Note
1	Cylinder tube	Aluminum alloy	Hard anodized
2	Head cover WR	Aluminum alloy	Painted
3	Head cover WL	Aluminum alloy	Painted
4	Piston yoke	Aluminum alloy	Anodized
5	Piston	Aluminum alloy	Chromated
		Special resin	
6	End cover	Carbon steel	Nickel plated (ø80, ø100)
7	Wear ring	Special resin	
8	Cushion ring	Aluminum alloy	Anodized
9	Cushion needle	Rolled steel	Nickel plated
10	Stopper	Carbon steel	Nickel plated
11	Belt separator	Special resin	
12	Guide roller	Special resin	(ø16, ø20, ø50, ø63)
13	Guide roller shaft	Stainless steel	(ø16, ø20, ø50, ø63)
16	Belt clamp	Special resin	
10	Dell Clamp	Aluminum alloy	Chromated (ø80, ø100)
17	Bearing	Special resin	
18	Spacer	Stainless steel	(ø16, ø20, ø50, ø63)
19	Spring pin	Carbon tool steel	
20	Type E retaining ring	Cold rolled special steel strip	(ø50, ø63)
21	Hexagon socket head cap screw	Chromium molybdenum steel	Chromated
22	Hexagon socket button head screw	Chromium molybdenum steel	Chromated
23	Hexagon socket head set screw	Chromium molybdenum steel	Black zinc chromated/ Chromated
24	Double round parallel key	Carbon steel	(ø16, ø20)
25	Hexagon socket head taper plug	Carbon steel	Chromated

No.	Description	Material	Note
26	Magnet	_	
28	Top cover	Stainless steel	
29	Hexagon socket head taper plug	Carbon steel	Chromated
36	Head plate	Aluminum alloy	Painted (ø63 to ø100)
37	Backup plate	Special resin	(ø80, ø100)
38	Guide roller B	Special resin	(ø80, ø100)
39	Guide roller A	Stainless steel	(ø80, ø100)
40	Guide roller shaft B	Stainless steel	(ø80, ø100)
41	Side cover	Aluminum alloy	Hard anodized (ø80, ø100)
42	Type CR retaining ring	Spring steel	
43	Hexagon socket button head screw	Chromium molybdenum steel	Chromated (ø80, ø100)
44	Hexagon socket button head screw	Chromium molybdenum steel	Chromated (ø80, ø100)
45	Spacer B	Stainless steel	(ø80, ø100)
46	Seal magnet	Rubber magnet	(ø80, ø100)
47	Lube-retainer	Special resin	(ø16 to ø63)

MY1B MY1H

MY1B

MY1M

MY1C

MY1H MY1 нт

MY1 \square W

MY2C MY2 H/HT

MY3B MY3M

MY3A

Replacement Part: Seal Kit

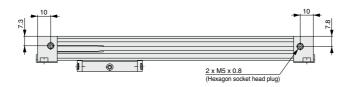
No.	Description	Qty.	MY1B16	MY1B20
14	Seal belt	1	MY16-16C-Stroke	MY20-16C-Stroke
15	Dust seal band	1	MY16-16B-Stroke	MY20-16B-Stroke
27	Side scraper	2	_	MYB20-15CA7164B
34	O-ring	2	KA00309	KA00309
34	O-ring		(ø4 x ø1.8 x ø1.1)	(ø4 x ø1.8 x ø1.1)
30	Scraper	2		
31	Piston seal	2		
32	Cushion seal	2	MY1B16-PS	MY1B20-PS
33	Tube gasket	2		
35	O-ring	4		

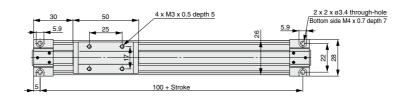
No.	Description	Qty.	MY1B50	MY1B63	MY1B80	MY1B100
14	Seal belt	1	MY50-16C-Stroke	MY63-16A-Stroke	MY80-16A-Stroke	MY100-16A-Stroke
15	Dust seal band	1	MY50-16B-Stroke	MY63-16B-Stroke	MY80-16B-Stroke	MY100-16B-Stroke
27	Side scraper	2	MYB50-15CA7165B	MYB63-15CA7166B	MYB80-15CK2470B	MYB100-15CK2471B
34	O-ring	2	KA00402	KA00777	KA00050	KA00050
34	O-ring		(ø8.3 x ø4.5 x ø1.9)	_	-	_
30	Scraper	2				
31	Piston seal	2				
32	Cushion seal	2	MY1B50-PS	MY1B63-PS	MY1B80-PS	MY1B100-PS
33	Tube gasket	2				
35	O-ring	4				

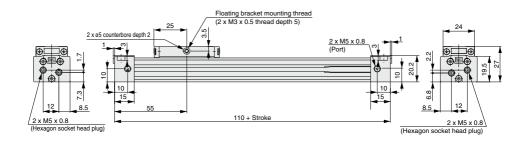
^{*} Seal kit includes 30, 31, 32, 33 and 35. Order the seal kit based on each bore size.

When (4) and (5) are shipped independently, a grease pack is included. (10 g per 1000 strokes)

Order with the following part number when only the grease pack is needed. Grease pack part number: GR-S-010 (10 g), GR-S-020 (20 g)

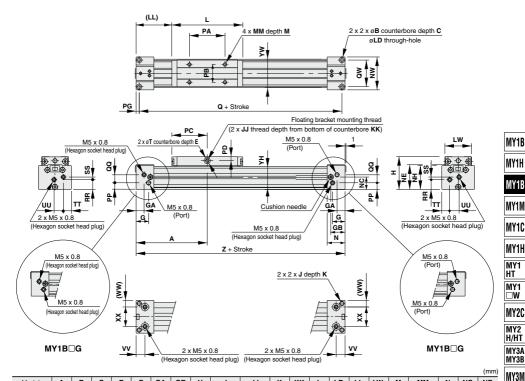

Note) Two kinds of dust seal bands are available for the MY1B16, 20, 50, 63. Since the part number varies depending on the treatment of the hexagon socket head set screw 3, please check a proper dust seal band carefully.


A: Black zinc chromated → MY□□-16B-stroke, B: Chromated → MY□□-16BW-stroke

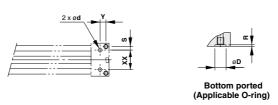

D-□ -X□ Technical Data

^{*} Seal kit includes a grease pack (10 g).

MY1B10G — Stroke



Standard Type/Centralized Piping Type $\varnothing 16$, $\varnothing 20$


Refer to page 1337 regarding centralized piping port variations.

MY1B16□/20□ - Stroke

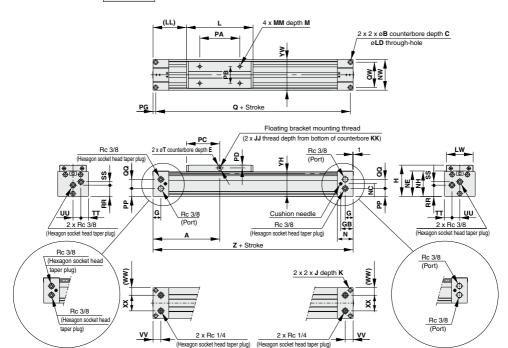
Model	Α	В	С	Е	G	GA	GB	Н	J	JJ	K	KK	L	LD	LL	LW	М	MM	N	NC	NE
MY1B16□	80	6	3.5	2	14	9	16	37	M5 x 0.8	M4 x 0.7	10	6.5	80	3.5	40	30	6	M4 x 0.7	20	14	27.8
MY1B20□	100	7.5	4.5	2	12.5	12.5	20.5	46	M6 x 1	M4 x 0.7	12	10	100	4.5	50	37	8	M5 x 0.8	25	17.5	34

																						(mm)
Model	NH	NW	PA	PB	PC	PD	PG	PP	Q	QQ	QW	RR	SS	Т	TT	UU	٧٧	ww	XX	YH	YW	Z
MY1B16□	27	37	40	20	40	4.5	3.5	7.5	153	9	30	11	3	7	9	10.5	10	7.5	22	26	32	160
MY1B20□	33.5	45	50	25	50	5	4.5	11.5	191	11	36	14.5	5	8	10.5	12	12.5	10.5	24	32.5	40	200

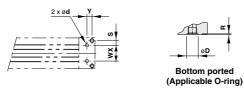
Hole Size for Centralized Piping on the Bottom

Model	WX	Υ	S	d	D	R	Applicable O-ring
MY1B16□	22	6.5	4	4	8.4	1.1	C6
MY1B20□	24	8	6	4	8.4	1.1	L 6

(Machine the mounting side to the dimensions below.)


D-□

MY1B□G

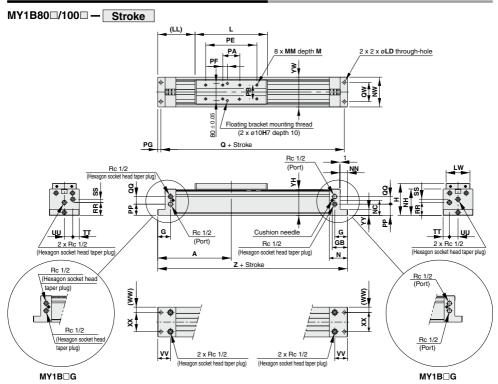

MY1B□G

MY1B50□/63□ - Stroke

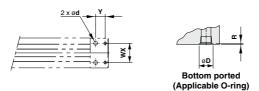
																				(mm)
Model	Α	В	С	Е	G	GB	н	J	JJ	К	KK	L	LD	LL	LW	М	MM	N	NC	NE
MY1B50□	200	14	8.5	3	23.5	37	94	M12 x 1.75	M6 x 1	25	17	200	9	100	80	14	M8 x 1.25	47	38	76.5
MY1B63□	230	17	10.5	3	25	39	116	M14 x 2	M8 x 1.25	28	24	230	11	115	96	16	M8 x 1.25	50	51	100

																						(mm)
Model	NH	NW	PA	PB	PC	PD	PG	PP	Q	QQ	QW	RR	SS	Т	TT	UU	٧٧	ww	XX	YH	YW	Z
MY1B50□	75	92	120	50	100	8.5	8	24	384	27	76	34	10	15	22.5	23.5	23.5	22.5	47	74	92	400
MY1B63□	95	112	140	60	115	9.5	10	37.5	440	29.5	92	45.5	13.5	16	27	29	25	28	56	94	112	460

Hole Size for Centralized Piping on the Bottom


Model	wx	Υ	S	d	D	R	Applicable O-ring
MY1B50□	47	15.5	14.5	10	17.5	1.1	045
MY1B63□	56	15	18	10	17.5	1.1	C15

(Machine the mounting side to the dimensions below.)


Standard Type/Centralized Piping Type Ø80, Ø100

Refer to page 1337 regarding centralized piping port variations.

																		(mm)
Model	Α	G	GB	Н	L	LD	LL	LW	М	MM	N	NC	NH	NN	NW	PA	PB	PE
MY1B 80□	345	60	71.5	150	340	14	175	112	20	M10 x 1.5	85	71	124	35	140	80	65	240
MY1B100□	400	70	79.5	190	400	18	200	140	25	M12 x 1.75	95	85	157	45	176	120	85	280

																	(mm)
Model	PF	PG	PP	Q	QQ	QW	RR	SS	TT	UU	VV	ww	XX	YH	YW	YY	Z
MY1B 80□	22	15	53	660	35	90	61	15	30	40	60	25	90	122	140	28	690
MY1B100□	42	20	69	760	38	120	75	20	40	48	70	28	120	155	176	35	800

Hole Size for Centralized Piping on the Bottom

Model	WX	Υ	d	D	R	Applicable O-ring
MY1B 80□	90	45	18	26	1.8	P22
MY1B100□	120	50	18	26	1.8	P22

(Machine the mounting side to the dimensions below.)

MY1B

MY1H

MY1B

MY1M

MY1C

MY1H

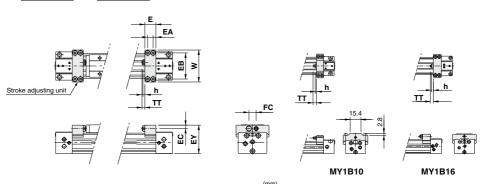
MY1 HT

MY1 □W

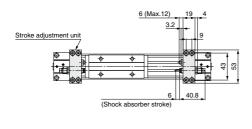
MY2C

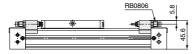
MY2

H/HT

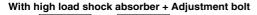

MY3A MY3B

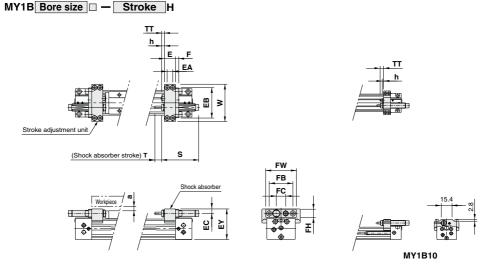
MY1B Series


Stroke Adjustment Unit


With adjustment bolt MY1B Bore size — Stroke A

									(111111)
Applicable bore size	Е	EA	EB	EC	EY	FC	h	TT	W
MY1B10	10	5	28	3.3	26.3	_	1.8	5 (Max. 10)	35
MY1B16	14.6	7	34.4	4.2	36.5	_	2.4	5.4 (Max. 11)	43
MY1B20	19	9	43	5.8	45.6	13	3.2	6 (Max. 12)	53


With low load shock absorber + Adjustment bolt MY1B20 - Stroke L



Stroke Adjustment Unit

Since the dimension EY of H unit is greater than the table top height (dimension H), when a workpiece is loaded that is larger than the full length (dimension L) of the slide table allow a clearance of size "a" or larger at the workpiece side.

(mm)

	_		_		_												
Applicable bore size	E	EA	EB	EC	EY	F	FB	FC	FH	FW	h	S	Т	TT	w	Shock absorber model	а
MY1B10	10	5	28	5.5	29.8		_	8	_	_	1.8	40.8	5	5 (Max. 10)	35	RB0805	3.5
MY1B20	20	10	49	6.5	47.5	6	33	13	12	46	3.5	46.7	7	5 (Max. 11)	60	RB1007	2.5

MY1 HT MY1 □W

MY1H

MY1B

MY1H

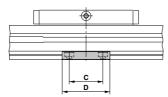
MY1B MY1M MY1C

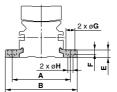
□W MY2C

MY2 H/HT MY3A MY3B

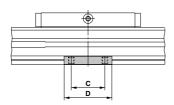
MY3M

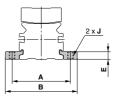
D-□ -X□


Technical Data


SMC

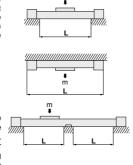
MY1B Series

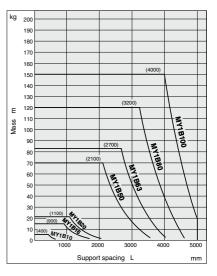

Side Support


Side support A MY-S□A

Side support B MY-S□B

										(11111)
Model	Applicable bore size	Α	В	С	D	Е	F	G	Н	J
MY-S10 A	MY1B 10	35	43.6	12	21	3	1.2	6.5	3.4	M4 x 0.7
MY-S16 A	MY1B 16	43	53.6	15	26	4.9	3	6.5	3.4	M4 x 0.7
MY-S20 A	MY1B 20	53	65.6	25	38	6.4	4	8	4.5	M5 x 0.8
MY-S32 A	MY1B 50	113	131	45	64	11.7	6	11	6.6	M8 x 1.25
MY-S50 A	MY1B 63	136	158	55	80	14.8	8.5	14	9	M10 x 1.5
MY-S63 A	MY1B 80	170	200	70	400	40.0	40.5	47.5	44.5	M40 4 75
W T-303 B	MY1B100	206	236	70	100	18.3	10.5	17.5	11.5	M12 x 1.75


^{*} A set of side supports consists of a left support and a right support.


Guide for Side Support Application

For long stroke operation, the cylinder tube may be deflected depending on its own weight and the load mass. In such a case, use a side support in the middle section. The spacing (L) of the support must be no more than the values shown in the graph on the right.

⚠ Caution

- 1. If the cylinder mounting surfaces are not measured accurately, using a side support may cause poor operation. Therefore, be sure to level the cylinder tube when mounting. Also, for long stroke operation involving vibration and impact, use of a side support is recommended even if the spacing value is within the allowable limits shown in the graph.
- 2. Support brackets are not for mounting; use them solely for providing support.

MY1B

MY1H MY1B

MY1M

MY1C

MY1H

MY1 HT MY1

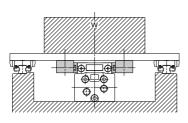
MY2C

MY2 H/HT MY3A MY3B

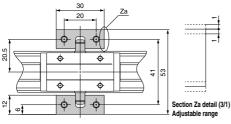
MY3M

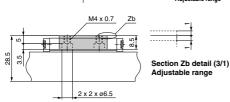
MY1B Series

Floating Bracket


Facilitates connection to other guide systems.

Applicable bore size


ø10


MY-J10

Application Example

Mounting Example

Note) A set of brackets with floating mechanism consists of a left bracket and a right bracket.

Installation of Holding Bolts Slider (Piston yoke) Linctuded parts Tightening Torque for Holding Bolts Model Tightening torque Model Tightening torque My-J10 0.6 MY-J25 3 MY-J50 5

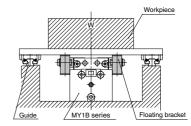
5

5

MY-J32

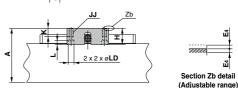
MY-J40

MY-J63


13

Applicable bore size

ø16, ø20


MY-J16/MY-J20

Application Example

Mounting Example

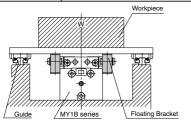
											(mm)
Model	Applicable bore size	Α	ı	3	-	С	D	F		G	Н
MY-J16	MY1B16□	45	4	5	22	2.5	30	52	:	38	18
MY-J20	MY1B20□	55	5	2	26	6	35	59		50	21
Model	Applicable bore size	JJ		K		L	Р	Q	Ез	E4	LD
MY-J16	MY1B16□	M4 x 0	.7	10		4	7	3.5	1	1	6
MY-J20	MY1B20□	M4 x 0	.7	10	Т	4	7	3.5	1	1	6

Note) A set of brackets with floating mechanism consists of a left bracket and a right

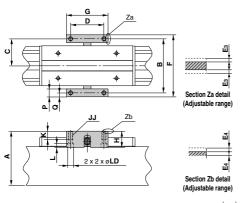
MY-J10 to 63 (1 set) Component Parts

Description	Qty.
Bracket	2
Pin	2
Conical spring washer	2
Holding bolt	2

MY-J16


1.5

Applicable bore size


ø**50**, ø**63**

MY-J50/MY-J63

Application Example

Mounting Example

											(mm
Model	Applicable bore size	Α	Е	3	С	D	F		G		Н
MY-J50	MY1B50□	110	11	10	55	70	126	3	90	0	37
MY-J63	MY1B63□	131	13	30	65	80	149	9	100	0	37
Model	Applicable bore size	JJ		K	L	Р	Q	E:	3	E4	LD
MY-J50	MY1B50□	M8 x 1.	25	20	7.5	16	8	2.	5	2.5	11
MY-J63	MY1B63□	M10 x	1.5	20	9.5	19	9.5	2.	5	2.5	14

Note) A set of brackets with floating mechanism consists of a left bracket and a right bracket.

MY1B MY1H

MY1B MY1M

MY1C

MY1H MY1 HT

MY1 □W MY2C

MY2 H/HT MY3A MY3B

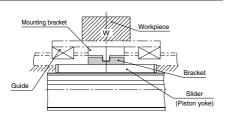
MY3M

D-□ -X□

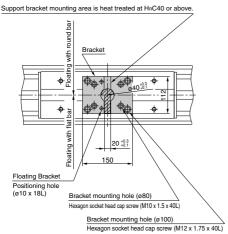
Technical Data

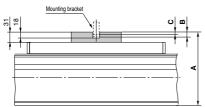
MY1B Series

Floating Bracket


Facilitates connection to other guide systems.

Applicable bore size


ø80, ø100


MY-J80/MY-J100

Application Example

Mounting Example

Hexagon Socket Head Cap Screw TighteningTorque (N·m)

					rigintenning re	nque (IN·III)
Model	Applicable bore size	Α	B (max.)	C (min.)	Model	Tightening torque
MY-J 80	MY1B 80□	181	15	9	MY-J 80	25
MY-J100	MY1B100□	221	15	9	MY-J100	44
					4	

Note) • Flat bar or round bar mounting are possible for the support bracket (slanted lines) mounted by the customer.

- "B" and "C" indicate the allowable mounting dimensions for the support bracket (flat bar or round bar).
- Consider support brackets with dimensions that allow the floating mechanism to function properly.

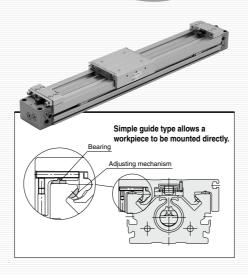
Floating Bracket Operating Precautions

⚠ Caution

When connecting to a load which has an external guide mechanism, use a discrepancy absorption mechanism.

Mount the external guide mounting brackets and floating brackets in a place where the required degree of freedom for the floating Y and Z axes can be secured

The thrust transmission area of the floating bracket must be fixed so that it does not partially contact with the body.


 Confirm the Coordinates and Moments in Model Selection on page 1229 for the details of floating Y and Z axes.

MY-J80, 100 (1 set) Component Parts

Description	Qty.
Bracket	1
Parallel pin	2
Holding bolt	4

MY1B

MY1H MY1B

MY1M

MY1C

MY1H MY1 HT

MY1

MY2C MY2 H/HT MY3A

MY3B MY3M

MY1M Series Prior to Use

Maximum Allowable Moment/Maximum Load Mass

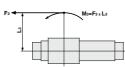
Mardal	Bore size	Maximum a	allowable mo	ment (N·m)	Maximum load mass (kg)			
Model	(mm)	M1	M2	Мз	m1	m2	mз	
	16	6.0	3.0	1.0	18	7	2.1	
	20	10	5.2	1.7	26	10.4	3	
	25	15	9.0	2.4	38	15	4.5	
MY1M	32	30	15	5.0	57	23	6.6	
	40	59	24	8.0	84	33	10	
	50	115	38	15	120	48	14	
	63	140	60	19	180	72	21	

The above values are the maximum allowable values for moment and load. Refer to each graph regarding the maximum allowable moment and maximum allowable load for a particular piston speed.

Maximum Allowable Moment

Select the moment from within the range of operating limits shown in the graphs. Note that the maximum allowable load value may sometimes be exceeded even within the operating limits shown in the graphs. Therefore, also check the allowable load for the selected conditions.

Load mass (kg)



Moment (N·m)

<Calculation of guide load factor>

- 1. Maximum allowable load (1), static moment (2), and dynamic moment (3) (at the time of impact with stopper) must be examined for the selection calculations.
 - * To evaluate, use ν a (average speed) for (1) and (2), and ν (collision speed $\nu = 1.4\nu$ a) for (3). Calculate mmax for (1) from the maximum allowable load graph (m1, m2, m3) and Mmax for (2) and (3) from the maximum allowable moment graph (M₁, M₂, M₃).

Sum of guide	Y _ Load mass [m]	Static moment [M] (1)	Dynamic moment [M _E] (2)
load factors	Maximum allowable load [mmax]	Allowable static moment [Mmax]	Allowable dynamic moment [Memax]

- Note 1) Moment caused by the load, etc., with cylinder in resting condition.
- Note 2) Moment caused by the impact load equivalent at the stroke end (at the time of impact with stopper).
- Note 3) Depending on the shape of the workpiece, multiple moments may occur. When this happens, the sum of the load factors (α) is the total of all such moments.

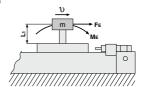
2. Reference formula [Dynamic moment at impact]

Use the following formulae to calculate dynamic moment when taking stopper impact into consideration.

- m: Load mass (kg)
- F: Load (N)
- FE: Load equivalent to impact (at impact with stopper) (N)
- **υa**: Average speed (mm/s)
- M: Static moment (N-m)

$$\upsilon = 1.4\upsilon a \text{ (mm/s) Fe} = 1.4\upsilon a \cdot \delta \cdot m \cdot g$$

$$\therefore \mathbf{M}_{E} = \frac{1}{3} \cdot \mathbf{F}_{E} \cdot \mathbf{L}_{1} = 4.57 \cdot \mathbf{0} \cdot \mathbf{a} \cdot \delta \mathbf{m} \mathbf{L}_{1} \cdot (\mathbf{N} \cdot \mathbf{m})$$


$$\therefore \mathbf{M}_{E} = \frac{1}{3} \cdot F_{E} \cdot L_{1} = 4.57 \upsilon a \delta m L_{1} (N \cdot m)$$

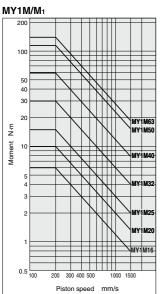
- υ: Collision speed (mm/s)
- L1: Distance to the load's center of gravity (m)
- ME: Dynamic moment (N·m)
- δ: Damper coefficient At collision: 1) = 1.41)a With rubber bumper = 4/100
 - (MY1B10, MY1H10) With air cushion = 1/100
 - With shock absorber = 1/100
- g: Gravitational acceleration (9.8 m/s2)

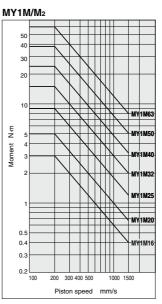
Note 4) 1.4 $va\delta$ is a dimensionless coefficient for calculating impact force.

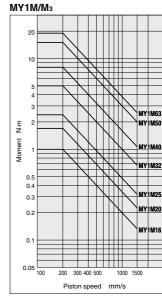
Note 5) Average load coefficient (= $\frac{1}{3}$): This coefficient is for averaging the maximum load moment at the time of stopper impact according to service life calculations.

3. For detailed selection procedures, refer to pages 1260 and 1261.

Maximum Load Mass


conditions.


Select the load from within the range of limits shown in the graphs. Note that the maximum allowable moment value may sometimes be exceeded even within the operating limits shown


in the graphs. Therefore, also check

the allowable moment for the selected

Prior to Use MY1M Series

MY1B

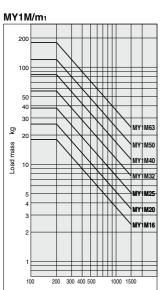
MY1H

MY1B

MY1M

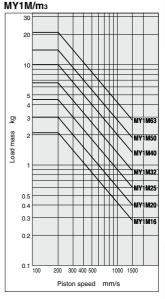
MY1C

MY1H MY1


нт

MY1


□W MY2C MY2 H/HT


MY3A MY3B

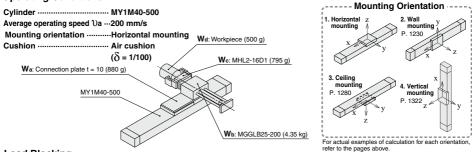
MY3M

Piston speed mm/s

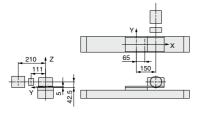
Technical Data

D-□

-X□


MY1M Series

Model Selection

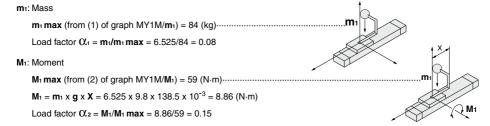

Following are the steps for selecting the most suitable MY1M series to your application.

Calculation of Guide Load Factor

1. Operating Conditions

2. Load Blocking

Mass and Center of Gravity for Each Workpiece

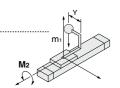

Workpiece no.	Mass	С	Center of gravity							
Wn	m _n	X-axis Xn	Y-axis Yn	Z-axis Zn						
Wa	0.88 kg	65 mm	0 mm	5 mm						
Wb	4.35 kg	150 mm	0 mm	42.5 mm						
Wc	0.795 kg	150 mm	111 mm	42.5 mm						
Wd	0.5 kg	150 mm	210 mm	42.5 mm						

n=a, b, c, d

3. Composite center of Gravity Calculation

$$\begin{split} & \mathbf{m}_1 = \Sigma m_n \\ & = 0.88 + 4.35 + 0.795 + 0.5 = \textbf{6.525 kg} \\ & \mathbf{X} = \frac{1}{\mathbf{m}_1} \times \Sigma \left(\mathbf{m}_n \times \mathbf{x}_n \right) \\ & = \frac{1}{6.525} \left(0.88 \times 65 + 4.35 \times 150 + 0.795 \times 150 + 0.5 \times 150 \right) = \textbf{138.5 mm} \\ & \mathbf{Y} = \frac{1}{\mathbf{m}_1} \times \Sigma \left(\mathbf{m}_n \times \mathbf{y}_n \right) \\ & = \frac{1}{6.525} \left(0.88 \times 0 + 4.35 \times 0 + 0.795 \times 111 + 0.5 \times 210 \right) = \textbf{29.6 mm} \\ & \mathbf{Z} = \frac{1}{\mathbf{m}_1} \times \Sigma \left(\mathbf{m}_n \times \mathbf{z}_n \right) \\ & = \frac{1}{6.525} \left(0.88 \times 5 + 4.35 \times 42.5 + 0.795 \times 42.5 + 0.5 \times 42.5 \right) = \textbf{37.4 mm} \end{split}$$

4. Calculation of load factor for static load


Model Selection MY1M Series

M₂: Moment

$$M_2$$
 max (from (3) of graph MY1M/ M_2) = 24 (N·m)·······

$$M_3 = m_1 \times q \times Y = 6.525 \times 9.8 \times 29.6 \times 10^{-3} = 1.89 \text{ (N·m)}$$

Load factor $O(3) = M_2/M_2 max = 1.89/24 = 0.08$

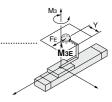
5. Calculation of Load Factor for Dynamic Moment -

Equivalent load FE at impact

$$\mathbf{F}_{E} = 1.4 \ \mathbf{va} \times \delta \times \mathbf{m} \times \mathbf{g} = 1.4 \times 200 \times \frac{1}{100} \times 6.525 \times 9.8 = 179.1 \text{ (N)}$$

M_{1E}: Moment

$$\mathbf{M}_{1E} = \frac{1}{3} \mathbf{x} \mathbf{F}_{E} \mathbf{x} \mathbf{Z} = \frac{1}{3} \mathbf{x} 179.1 \mathbf{x} 37.4 \mathbf{x} 10^{-3} = 2.23 (N \cdot m)$$


Load factor $O(4 = M_{1E}/M_{1E} max = 2.23/42.1 = 0.05$

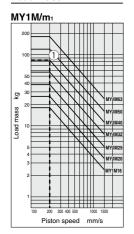
M_{3E} max (from (5) of graph MY1M/M₃ where 1.4 ν a = 280 mm/s) = 5.7 (N·m)....

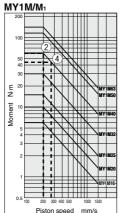
$$\mathbf{M}_{3E} = \frac{1}{3} \times \mathbf{F}_{E} \times \mathbf{Y} = \frac{1}{3} \times 179.1 \times 29.6 \times 10^{-3} = 1.77 \text{ (N·m)}$$

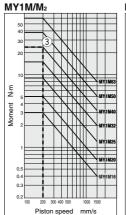
Load factor $\Omega_{5} = M_{3E}/M_{3E} max = 1.77/5.7 = 0.31$

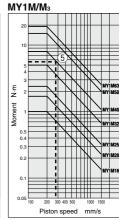
6. Sum and Examination of Guide Load Factors

$$\Sigma_{\text{CL}} = \text{CL}_1 + \text{CL}_2 + \text{CL}_3 + \text{CL}_4 + \text{CL}_5 = \textbf{0.67} \leq \textbf{1}$$


The above calculation is within the allowable value, and therefore the selected model can be used. Select a shock absorber separately.


In an actual calculation, when the total sum of guide load factors α in the formula above is more than 1, consider either decreasing the speed, increasing the bore size, or changing the product series. This calculation can be easily made using the "SMC Pneumatics CAD System".


SMC


Load Mass

Allowable Moment

MY1B MY1H

MY1B

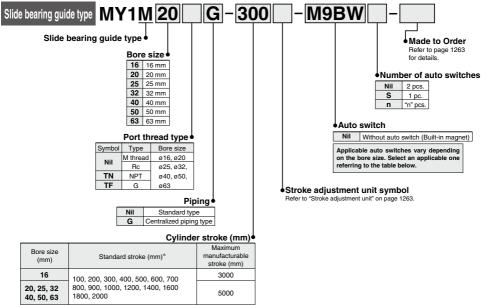
MY1M MY1C MY1H

MY1 HT MY1

MY2C

MY2 H/HT MY3A MY3B

MY3M


D-□ -X□

Mechanically Jointed Rodless Cylinder Slide Bearing Guide Type

MY1M Series

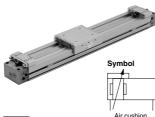
Ø16, Ø20, Ø25, Ø32, Ø40, Ø50, Ø63

How to Order

^{*} The stroke can be manufactured up to the maximum stroke from 1 mm stroke in 1 mm increments. However, when the stroke is 49 mm or less, the air cushion capability lowers and multiple auto switches cannot be mounted. Pay special attention to this point. Also when exceeding a 2000 mm stroke, specify "XB11" at the end of the model number. For details, refer to the "Made to Order Specifications"

Applicable Auto Switches/Refer to pages 1575 to 1701 for further information on auto switches.

			ight		L	oad volta	ge		Auto swit	ch mode	ı	Lead	wire	lengtl	h (m)																	
Type	Special function	Electrical entry	ator	Wiring (Output)	_	C	AC	Perper	ndicular	In-l	ine	0.5	1	3		Pre-wired connector	Applical	ole load														
		Citaly	Indic	(Output)	L	C AC		ø16, ø20	ø25 to ø63	ø16, ø20	ø25 to ø63	(Nil)	(M)	(L)	(Z)	COILLECTOL																
듀				3-wire (NPN)		5 V. 12 V		M9	NV	Ms	9N	•	•	•	0	0	IC circuit															
switch							3-wire (PNP)		J V, 12 V		M9	PV	M	9P	•	•	•	0	0	IC CITCUIT												
				2-wire		12 V		M9	M9BV M9B		•	•	•	0	0	_																
욕	Diatia ia dia atia-	Grommet																3-wire (NPN)		5 V. 12 V	. [M9N	1MA	M9	NW	•	•	•	0	0	IC circuit	Delevi
a	Diagnostic indication (2-color indicator)		Yes	3-wire (PNP)	24 V	J V, 12 V	_	M9F	νwν	М9	PW	•	•	•	0	0	IC CITCUIT	Relay, PLC														
state	(E color indicator)			2-wire		12 V		M9E	3WV	M9	BW	•	•	•	0	0	_															
	14/			3-wire (NPN)	5 V. 12 V		M9N	AV*1	M9N	IA*1	0	0	•	0	0	IC circuit																
Solid	Water resistant (2-color indicator)			3-wire (PNP)		J V, 12 V		M9P	AV*1	M9F	PA*1	0	0	•	0	0	IC CITCUIT															
	[` '			2-wire		12 V		M9B	AV*1	M9E	8 A *1	0	0	•	0	0	_															
_ <u>:</u>			I Yes I	3-wire (NPN equivalent)	_	5 V	-	A96V	_	A96	Z76	•	_	•	_	_	IC circuit	_														
Reed auto switch		Grommet		et Yes	2-wire	24 V	12 V	100 V	A93V*2	_	A93	Z73	•	•	•	•	_	_	Relay,													
antc				Z-wire	24 V	12 V	100 V or less	A90V	_	A90	Z80	•	_	•	_	_	IC circuit	PLC														


- *1 Water resistant type auto switches can be mounted on the above models, but in such case SMC cannot guarantee water resistance
- Consult with SMC regarding water resistant types with the above model numbers.
- *2 1 m type lead wire is only applicable to D-A93.

1262

- * Lead wire length symbols: 0.5 m Nil (Example) M9NW
 - 3 m L (Example) M9NWL 5 m Z (Example) M9NWZ
- * Solid state auto switches marked with "O" are produced upon receipt of order.
- Separate switch spacers (BMG2-012) are required to retrofit auto switches (M9 type) on cylinders ø25 to ø63.
- * There are other applicable auto switches than listed above. For details, refer to page 1333.
- * For details about auto switches with pre-wired connector, refer to pages 1648 and 1649.

 * Auto switches are shipped together (not assembled). (Refer to pages 1331 to 1333 for the details of auto switch mounting.)

Mechanically Jointed Rodless Cylinder MY1M Series Slide Bearing Guide Type

Made to Order: Individual Specifications (For details, refer to page 1334.)

Symbol	Specifications
-X168	Helical insert thread specifications

Made to Order Specifications

Click here for details

Symbol	Specifications
-XB11	Long stroke
-XB22	Shock absorber soft type RJ series type
-XC67	NBR rubber lining in dust seal band

Stroke Adjustment Unit Symbol

Specifications

Bore size (mm)	16	20	25	32	40	50	63	
Fluid				Air					
Action				Double a	acting				
Operating p	ressure range	0.2 to 0.8 MP	a		0.1	5 to 0.8 N	1Pa		
Proof pres	sure			1.2 M	Pa				
Ambient and	fluid temperature			5 to 6	0°C				
Cushion		Air cushion							
Lubricatio	n	Non-lube							
Stroke len	gth tolerance	1000 or less +1.8 1001 to 3000 +2.8		2700 or	less ^{+1.8} ,	2701 to	5000+2.8		
Piping	Front/Side port	M5 x 0.8		Rc	1/8	Rc 1/4	Rc	3/8	
port size	Bottom port	ø4		Ø	6	ø8	ø.	10	

Piston Speed

В	ore size (mm)	16 to 63
Without stroke a	djustment unit	100 to 1000 mm/s
Stroke	A unit	100 to 1000 mm/s ⁽¹⁾
adjustment unit	L unit and H unit	100 to 1500 mm/s ⁽²⁾

Note 1) Be aware that when the stroke adjustment range is increased by manipulating the adjustment bolt, the air cushion capacity decreases. Also, when exceeding the air cushion stroke ranges on page 1266, the piston speed should be 100 to 200 mm per second.

Note 2) The piston speed is 100 to 1000 mm/s for centralized piping.

Note 3) Use at a speed within the absorption capacity range. Refer to page 1266.

L6L7

L7

HL7

H6L7

Stroke Adjustment Unit Specifications

01.01071	,																				
Bore size (mm) Unit symbol		1	6		20			25			32			40			50			63	
		Α	L	Α	L	н	Α	L	Н	Α	L	н	Α	L	н	Α	L	н	Α	L	Н
Configuration	rber model	With adjustment bolt	RB 0806 + with adjustment bolt	With adjustment bolt	RB 0806 + with adjustment bolt	RB 1007 + with adjustment bolt	With adjustment bolt	RB 1007 + with adjustment bolt	RB 1412 with adjustment bolt	With adjustment bolt	RB 1412 + with adjustment bolt	+ with	With adjustment bolt	RB 1412 + with adjustment bolt	With	With adjustment bolt	RB 2015 + with adjustment bolt	With	With adjustment bolt	RB 2015 + with adjustment bolt	RB 2725 + with adjustment bolt
Stroke adjust- ment range by	Without spacer	0 to	-5.6	() to -6		0	to –11	.5	() to -1:	2	() to -1	6	0	to -20)	C	to -25	5
intermediate	With short spacer	-5.6 to	-11.2	-6	6 to -1:	2	-1	1.5 to -	-23	-	12 to -:	24	-1	6 to ∹	32	-2	!0 to ⊸	10	-2	!5 to −!	50
fixing spacer (mm)	With long spacer	-11.2 t	0 –16.8	-1	-12 to -18		-23 to -34.5		−24 to −36		-3	32 to →	48	-40 to -60		60	−50 to −75		75		

Right side stroke adjustment unit

Stroke adjustment unit mounting diagram

Stroke adjustment unit Intermediate fixing spacer Spacer length

H: With high load shock absorber L: With low load shock absorber A: With adjustment bolt + Adjustment bolt ment bolt + Adjustr Without unit With short With long With short With long With long With short spacer spacer spacer spacer spacer spacer Without unit Nil SΔ SA6 SA7 SI SL6 SI 7 SH SH6 SH7 A: With adjustment bolt AS AA6 AA7 ΑL AL6 AL7 AΗ AH6 AH7 A: With adjustment bolt
With short spacer
With long spacer
L: With low load shock absorber + A6S **A6A** 46 **A6A7** ΔAI **A6L6** A6L7 A6H **A6H6** A6H7 A7S Δ7Δ **A7A6** Α7 A7L A7L6 A7L7 A7H **A7H6** A7H7 LA6 LS LA7 LL6 LL7 LH LH6 LH7

L6A7

L7A7

HA7

L6L

L7L

H6L

H7L

L6

L7L6

HL6

H6L6

H7L6 H7L7

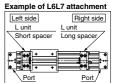
I 6A6

L7A6

HA6

H6A6 H6A7

H7A6 H7A7


H7S Spacers are used to fix the stroke adjustment unit at an intermediate stroke position

L6S

L7S

HS

H6S

Shock Absorbers for L and H Units

Adjustment With short spacer

H: With high load shock absorber

With long spacer

With short spacer

With long spacer

bolt

bolt

Adjustment

side

Type	Stroke adjustment	Bore size (mm)										
туре	unit	16	20	25	32	40	50	63				
Standard (Shock absorber/	L	RB0806		RB1007	RB1412		RB2015					
RB series)	Н	_	RB1007	RB1412	RB2	2015	RB2	725				
Shock absorber/ soft type RJ series	L	RJ08	306H	RJ1007H	RJ14	112H	_	_				
mounted (-XB22)	Н	_	RJ1007H	RJ1412H	_	_	_	_				

I 6A

L7A

H6A

H7A

- * The shock absorber service life is different from that of the MY1M cylinder depending on operating conditions. Refer to the RB Series Specific Product Precautions for the replacement period
- * Mounted shock absorber soft type RJ series (-XB22) is made to order specifications. For details, refer to page 1752.

Shock Absorber Specifications

L6H7

L7H7

HH7

H6H7

H7

L6H6

L7H6

HH₆

Н6

H7H6

1.6H

L7H

H₆H

H7H

onock Absorber opecinications									
Mod	iel	RB 0806	RB 1007	RB 1412	RB 2015	RB 2725			
Max. energy a	bsorption (J)	2.9	5.9	19.6	58.8	147			
Stroke absor	rption (mm)	6	7	12	15	25			
Max. collision	speed (mm/s)	1500							
Max. operating freq	uency (cycle/min)	80	70	45	25	10			
Spring	Extended	1.96	4.22	6.86	8.34	8.83			
force (N)	Retracted	4.22 6.86 15.98 20.50 20.0							
Operating temper	ature range (°C)	5 to 60							
- 1 9 p									

The shock absorber service life is different from that of the MY1M cylinder depending on operating conditions. Refer to the RB Series Specific Product Precautions for the replacement period.

D-□ -X□ Technical

MY1B MY1H

MY1B

MY1N MY1C MY1H MY1 MY1 $\square W$

MY2C

H/HT

MY3A

MY3B

MY3M

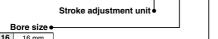
^{*} Stroke adjustment range is applicable for one side when mounted on a cylinder.

Theoretical Output

								(N)				
Bore size	Piston	Operating pressure (MPa)										
(mm)	area (mm²)	0.2	0.3	0.4	0.5	0.6	0.7	0.8				
16	200	40	60	80	100	120	140	160				
20	314	62	94	125	157	188	219	251				
25	490	98	147	196	245	294	343	392				
32	804	161	241	322	402	483	563	643				
40	1256	251	377	502	628	754	879	1005				
50	1962	392	588	784	981	1177	1373	1569				
63	3115	623	934	1246	1557	1869	2180	2492				

Note) Theoretical output (N) = Pressure (MPa) x Piston area (mm²)

Weight


							(kg		
Bore Basic		Additional weight per each	Weight of movina	Side support bracket weight (per set)	Stroke adjustment unit weigh (per unit)				
	weight	50 mm of stroke	parts	Type A and B	A unit weight	L unit weight	H unit weight		
16	0.67	0.12	0.19	0.01	0.03	0.04	_		
20	1.11	0.16	0.28	0.02	0.04	0.05	0.08		
25	1.64	0.24	0.39	0.02	0.07	0.11	0.18		
32	3.27	0.38	0.81	0.04	0.14	0.23	0.39		
40	5.88	0.56	1.41	0.08	0.25	0.34	0.48		
50	10.06	0.77	2.51	0.08	0.36	0.51	0.81		
63	16.57	1.11	3.99	0.17	0.68	0.83	1.08		

Calculation: (Example) MY1M25-300A

Weight of A unit----- 0.07 kg

Option

Stroke Adjustment Unit Part No.

16	16 mm
20	20 mm
25	25 mm
32	32 mm
40	40 mm
50	50 mm
63	63 mm

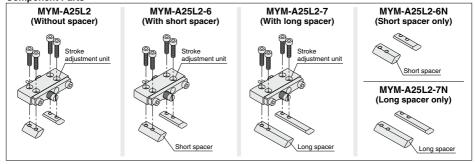
	·	Jnit no. ●
Symbol	Stroke adjustment unit	Mounting position
A1	A unit	Left
A2	A unit	Right
L1	L unit	Left
L2	L unit	Right
H1	H unit	Left
H2	ri uliit	Right

MYM-A 25 L2-6N

Note 1) Refer to page 1263 for details about

adjustment range. Note 2) A and L unit only for ø16

Intermediate fixing spacer NII Without spacer 6 Short spacer T Long spacer


Stroke adjustment unit

Spacer delivery type
Nil Unit installed
N Spacer only

- Spacers are used to fix the stroke adjustment unit at an intermediate stroke position.
- intermediate stroke position.

 * Spacers are shipped for a set of two.

Component Parts

Side Support Part No.

Bore size (mm)		20	25	32	40	50	63
Side support A	MY-S16A	MY-S20A	MY-S25A	MY-S32A	MY-S	640A	MY-S63A
Side support B	MY-S16B	MY-S20B	MY-S25B	MY-S32B	MY-S	MY-S63B	

For details about dimensions, etc., refer to page 1275.

MY1B

MY1H MY1B

MY1M

MY1C

MY1H

MY1 HT

MY1 W MY2C

MY2 H/HT MY3A MY3B

MY3M

MY1M Series

Cushion Capacity

Cushion Selection

<Air cushion>

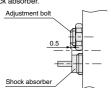
Air cushions are a standard feature on mechanically jointed rodless cylinders. The air cushion mechanism is incorporated to prevent excessive impact of the piston at the stroke end during high speed operation. The purpose of air cushion, thus, is not to decelerate the piston near the stroke end. The ranges of load and speed that air cushions can absorb are within the air cushion limit lines shown in the graphs.

<Stroke adjustment unit with shock absorber>

Use this unit when operating with a load or speed exceeding the air cushion limit line, or when cushioning is required outside of the effective air cushion stroke range due to stroke adjustment.

<L unit>

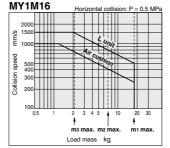
Use this unit when the cylinder stroke is outside of the effective air cushion range even if the load and speed are within the air cushion limit line, or when the cylinder is operated in a load and speed range above the air cushion limit line or below the L unit limit line.

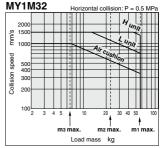

<H unit>

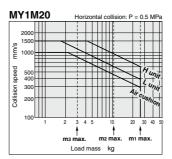
Use this unit when the cylinder is operated in a load and speed range above the L unit limit line and below the H unit limit line.

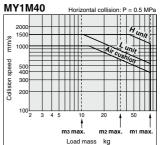
Refer to the figure below when using the adjustment bolt to perform stroke adjustment.

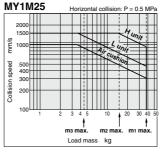
When the effective stroke of the shock absorber decreases as a result of stroke adjustment, the absorption capacity decreases dramatically. Secure the adjustment bolt at the position where it protrudes approximately 0.5 mm from the shock absorber.

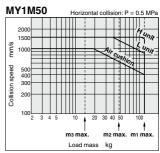

Do not use a shock absorber together with air cushion.

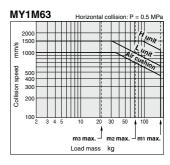

Air Cushion Stroke

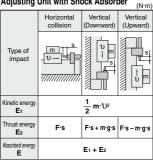

Bore size (mm)	Cushion stroke
16	12
20	15
25	15
32	19
40	24
50	30
63	37


(mm)


Absorption Capacity of Air Cushion and Stroke Adjustment Units






Tightening Torque for Stroke Adjusting Unit Holding Bolts $_{\rm (N\cdot m)}$

,		· · · (IV·III)
Bore size (mm)	Unit	Tightening torque
16	Α	0.7
10	L	0.7
	Α	
20	L	1.8
	Н	
	Α	
25	L	3.5
	Н	
	Α	
32	L	5.8
	Н	
	Α	
40	L	13.8
	Н	
	Α	
50	L	13.8
	Н	
	Α	
63	L	27.5
	Н	

Tightening Torque for Stroke Adjustment Unit Lock Plate Holding Bolts (N-m)

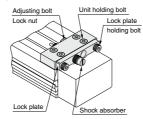
Bore size (mm)	Unit	Tightening torque
25	L	1.2
25	Н	3.3
32	L	3.3
32	Н	10
40	L	3.3
70	Н	10

Calculation of Absorbed Energy for Stroke Adjusting Unit with Shock Absorber

Symbol

- υ: Speed of impact object (m/s)
- F: Cylinder thrust (N)
- s: Shock absorber stroke (m)
- m: Mass of impact object (kg)
- g: Gravitational acceleration (9.8 m/s2)

Note) The speed of the impact object is measured at the time of impact with the shock absorber.


⚠Precautions

Be sure to read this before handling the products. Refer to back page 50 for Safety Instructions and pages 3 to 12 for Actuator and Auto Switch Precautions.

⚠ Caution

Use caution not to get your hands caught in the unit.

 When using a product with stroke adjustment unit, the space between the slide table (slider) and the stroke adjustment unit becomes narrow at the stroke end, causing a danger of hands getting caught. Install a protective cover to prevent direct contact with the human body.

<Fastening of unit>

The unit can be secured by evenly tightening the four unit holding bolts.

⚠ Caution

Do not operate with the stroke adjustment unit fixed in an intermediate position.

When the stroke adjustment unit is fix in an intermediate position, slippage can occur depending on the amount of energy released at the time of an impact. In such cases, as a stroke adjustment unit with the spacer for intermediate securing is available, it is recommended to use it.

For other lengths, please consult with SMC (Refer to "Tightening Torque for Stroke Adjusting Unit Holding Bolts".)

<Stroke adjustment with adjustment bolt> Loosen the adjustment bolt lock nut, and adjust the stroke from the lock plate side using a hexagon wrench. Retighten the lock nut.

<Stroke adjustment with shock absorber>

Loosen the two lock plate holding bolts, turn the shock absorber and adjust the stroke. Then, uniformly tighten the lock plate holding bolts to secure the shock absorber.

Take care not to over-tighten the holding bolts. (Except ø16, ø20, ø50, ø63)

(Refer to "Tightening Torgue for Stroke Adjusting Unit Lock Plate Holding Bolts".)

Note) Although the lock plate may slightly bend due to tightening of the lock plate holding bolt, this does not a affect the shock absorber and locking function.

> MY1B MY1H

MY1B

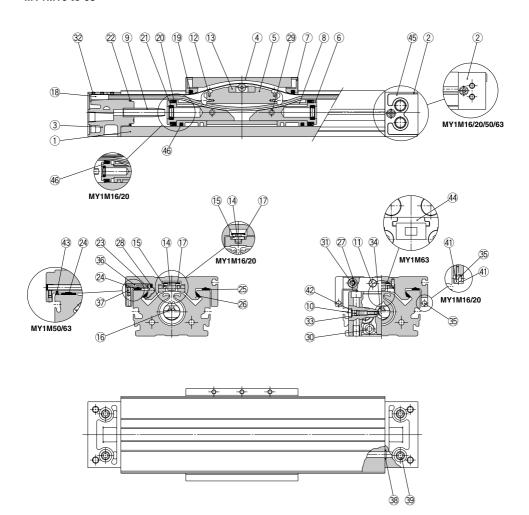
MY1M MY1C

MY1H MY1 HT

MY1

MY2C MY2 H/HT MY3A

MY3B MY3M



MY1M Series

Construction: Ø16 to Ø63

MY1M16 to 63

Mechanically Jointed Rodless Cylinder MY1M Series Slide Bearing Guide Type

MY1M16 to 63

Component Parts

No.	Description	Material	Note
1	Cylinder tube	Aluminum alloy	Hard anodized
2	Head cover WR	Aluminum alloy	Painted
3	Head cover WL	Aluminum alloy	Painted
4	Slide table	Aluminum alloy	Hard anodized
5	Piston yoke	Aluminum alloy	Chromated
6	Piston	Aluminum alloy	Chromated
7	End cover	Special resin	
8	Wear ring	Special resin	
9	Cushion ring	Aluminum alloy	Anodized
10	Cushion needle	Rolled steel	Nickel plated
11	Stopper	Carbon steel	Nickel plated
12	Belt separator	Special resin	
13	Coupler	Sintered iron material	
14	Guide roller	Special resin	
15	Guide roller shaft	Stainless steel	
18	Belt clamp	Special resin	
23	Adjusting arm	Aluminum alloy	Chromated
24	Bearing R	Special resin	
25	Bearing L	Special resin	
26	Bearing S	Special resin	

No.	Description	Material	Note
27	Spacer	Stainless steel	
28	Backup spring	Stainless steel	
29	Spring pin	Carbon tool steel	
30	Hexagon socket head cap screw	Chromium molybdenum steel	Chromated
31	Hexagon socket button head screw	Chromium molybdenum steel	Chromated
32	Hexagon socket head set screw	Chromium molybdenum steel	Black zinc chromated/Chromated
34	Hexagon socket head taper plug	Carbon steel	Chromated
35	Magnet	_	
36	Hexagon socket head set screw	Chromium molybdenum steel	Black zinc chromated
37	Hexagon socket head set screw	Chromium molybdenum steel	Black zinc chromated
39	Hexagon socket head taper plug	Carbon steel	Chromated
40	Magnet holder	Special resin	(ø16, ø20)
41	Hexagon socket head cap screw	Chromium molybdenum steel	Nickel plated
42	Type CR retaining ring	Spring steel	
44	Head plate	Aluminum alloy	Hard anodized (ø63)
45	Port cover	Special resin	(ø25 to ø40)
46	Lube-retainer	Special resin	

MY1B MY1H

MY1B

MY1M

MY1C

MY1H MY1 HT

MY1 □W MY2C

MY2 H/HT MY3A

MY3B MY3M

Replacement Part: Seal Kit

No.	Description	Qty.	MY1M16	MY1M20	MY1M25	MY1M32	MY1M40	MY1M50	MY1M63
16	Seal belt	1	MY16-16C-Stroke	MY20-16C-Stroke	MY25-16C-Stroke	MY32-16C-Stroke	MY40-16C-Stroke	MY50-16C-Stroke	MY63-16A-Stroke
17	Dust seal band	1	MY16-16B-Stroke	MY20-16B-Stroke	MY25-16B-Stroke	MY32-16B-Stroke	MY40-16B-Stroke	MY50-16B-Stroke	MY63-16B-Stroke
33	O-ring	2	KA00309	KA00311	KA00311	KA00320	KA00402	KA00777	KA00777
33	O-rillig		(ø4 x ø1.8 x ø1.1)	(ø5.1 x ø3 x ø1.05)	(ø5.1 x ø3 x ø1.05)	(ø7.15 x ø3.75 x ø1.7)	(ø8.3 x ø4.5 x ø1.9)	_	
43	Side scraper	2	_	_	_	_	_	MYM50-15CK0502B	MYM63-15CK0503B
19	Scraper	2							
20	Piston seal	2							
21	Cushion seal	2	MY1M16-PS	MY1M20-PS	MY1M25-PS	MY1M32-PS	MY1M40-PS	MY1M50-PS	MY1M63-PS
22	Tube gasket	2							
38	O-ring	4							

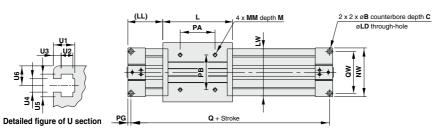
^{*} Seal kit includes (9, 20, 2), 22 and 38. Order the seal kit based on each bore size.

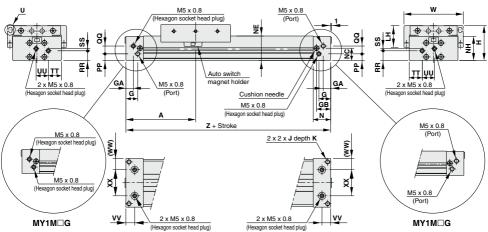
* Seal kit includes a grease pack (10 g).

When (6) and (7) are shipped independently, a grease pack is included. (10 g per 1000 strokes)

Order with the following part number when only the grease pack is needed.

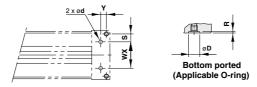
Grease pack part number: GR-S-010 (10 g), GR-S-020 (20 g)


Note) Two kinds of dust seal bands are available. Verify the type to use, since the part number varies


depending on the treatment of the hexagon socket head set screw ③.

A: Black zinc chromated → MY□□-16B-stroke, B: Chromated → MY□□-16BW-stroke

MY1M16□/20□- Stroke



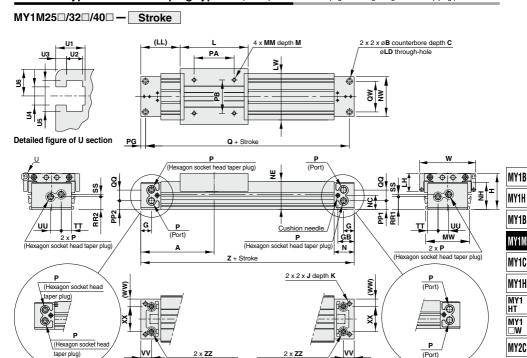
																						()
Model	Α	В	С	G	GA	GB	Н	J	K	L	LD	LH	LL	LW	М	MM	N	NC	NE	NH	NW	PA
MY1M16□	80	6	3.5	13.5	8.5	16.2	40	M5 x 0.8	10	80	3.6	22.5	40	54	6	M4 x 0.7	20	14	28	27.7	56	40
MY1M20□	100	7.5	4.5	12.5	12.5	20	46	M6 x 1	12	100	4.8	23	50	58	7.5	M5 x 0.8	25	17	34	33.7	60	50

																(mm)
Model	1	PB	PG	PP	Q	QQ	QW	RR	SS	TT	UU	VV	W	ww	XX	Z
MY1M1	6□	40	3.5	7.5	153	9	48	11	2.5	15	14	10	68	13	30	160
MY1M2	0□	40	4.5	11.5	191	10	45	14.5	5	18	12	12.5	72	14	32	200

Detailed Dimensions of U Section (mm)														
Model	U1	U2	U3	U4	U5	U6								
MY1M16□	5.5	3	2	3.4	5.8	5								
MY1M20□	5.5	3	2	3.4	5.8	5.5								

(mm)

Hole Size for Centralized Piping on the Bottom


Model	WX	Y	S	d	D	R	Applicable O-ring
MY1M16□	30	6.5	9	4	8.4	1.1	
MY1M20□	32	8	6.5	4	8.4	1.1	C6

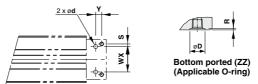
(Machine the mounting side to the dimensions below.)

Mechanically Jointed Rodless Cylinder MY1M Series Slide Bearing Guide Type

Standard Type/Centralized Piping Type Ø25, Ø32, Ø40 Refer to page 1337 regarding centralized piping port variations.

																							(mm)
Model	Α	В	С	G	GB	Н	J	K	L	LD	LH	LL	LW	M	MM	MW	N	NC	NE	NH	NW	P	PA
MY1M25□	110	9	5.5	17	24.5	54	M6 x 1	9.5	102	5.6	27	59	70	10	M5 x 0.8	66	30	21	41.8	40.5	60	Rc1/8	60
MY1M32□	140	11	6.5	19	30	68	M8 x 1.25	16	132	6.8	35	74	88	13	M6 x 1	80	37	26	52.3	50	74	Rc1/8	80
MY1M40□	170	14	8.5	23	36.5	84	M10 x 1.5	15	162	8.6	38	89	104	13	M6 x 1	96	45	32	65.3	63.5	94	Rc1/4	100

(Hexagon socket head taper plug)


(Hexagon socket head taper plug)

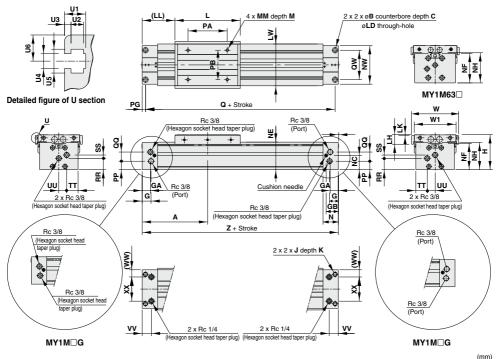
MY1M□G

"P" indicates cylinder supply ports. **Detailed Dimensions**

MY1M□G

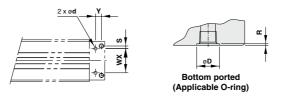
																		(mm)	of U Se	ctio	n				(mm
Model	PB	PG	PP1	PP2	Q	QQ	QW	RR1	RR2	SS	TT	UU	٧٧	W	ww	XX	Z	ZZ	Model	U1	U2	U3	U4	U5	U6
MY1M25□	50	7	12.7	12.7	206	15.5	46	18.9	17.9	4.1	15.5	16	16	84	11	38	220	Rc 1/16	MY1M25□	5.5	3	2	3.4	5.8	5
MY1M32□	60	8	15.5	18.5	264	16	60	22	24	4	21	16	19	102	13	48	280	Rc 1/16	MY1M32□	5.5	3	2	3.4	5.8	7
MY1M40□	80	9	17.5	20	322	26	72	25.5	29	9	26	21	23	118	20	54	340	Rc 1/8	MY1M40□	6.5	3.8	2	4.5	7.3	8

Hole Size for Centralized Piping on the Bottom


Model	WX	Y	S	d	D	R	Applicable O-ring
MY1M25□	38	9	4	6	11.4	1.1	C9
MY1M32□	48	11	6	6	11.4	1.1	l Ca
MY1M40□	54	14	9	8	13.4	1.1	C11.2

(Machine the mounting side to the dimensions below.)

MY2 H/HT

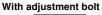

MY3A MY3B MY3M MY1M50□/60□ - Stroke

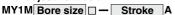
Model	Α	В	С	G	GA	GB	Н	J	K	L	LD	LH	LK	LL	LW	М	MM	N	NC	NE	NF	NH	NW	PA
MY1M50□	200	17	10.5	27	25	37.5	107	M14 x 2	28	200	11	29	2	100	128	15	M8 x 1.25	47	43.5	84.5	81	83.5	118	120
MY1M63□	230	19	12.5	29.5	27.5	39.5	130	M16 x 2	32	230	13.5	32.5	5.5	115	152	16	M10 x 1.5	50	56	104	103	105	142	140

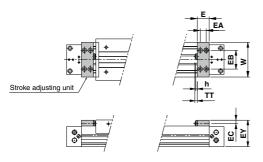
																(mm)
Model	PB	PG	PP	Q	QQ	QW	RR	SS	TT	UU	٧٧	W	W1	ww	XX	Z
MY1M50□	90	10	26	380	28	90	35	10	35	24	28	144	128	22	74	400
MY1M63□	110	12	42	436	30	110	49	13	43	28	30	168	152	25	92	460

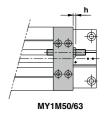
Detailed Dimensions of U Section (mm) U6 U1 U2 U3 U4 U5 MY1M50□ 6.5 3.8 2 4.5 7.3 8 MY1M63□ 8.5 5 2.5 5.5 8.4 8

Hole Size for Centralized Piping on the Bottom


Model	wx	Y	S	d	D	R	Applicable O-ring
MY1M50□	74	18	8	10	17.5	1.1	C15
MY1M63□	92	18	9	10	17.5	1.1	CIS

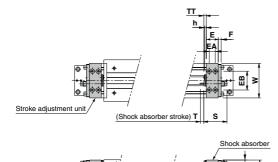

(Machine the mounting side to the dimensions below.)




Mechanically Jointed Rodless Cylinder MY1M Series Slide Bearing Guide Type

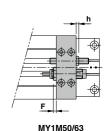
Stroke Adjustment Unit

MY1B MY1H MY1B MY1M MY1C MY1H MY1 HT


□W

MY2C MY2 H/HT MY3A MY3B

N		
8		
8		
· n		

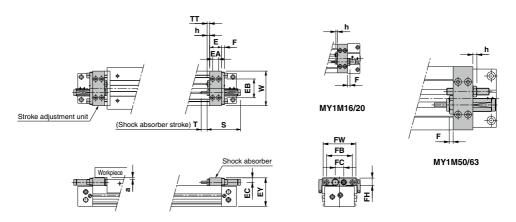

Applicable bore size	E	EA	EB	EC	EY	FC	h	TT	W
MY1M16	14.6	7	30	5.8	39.5	14	3.6	5.4 (Max. 11)	58
MY1M20	20	10	32	5.8	45.5	14	3.6	5 (Max. 11)	58
MY1M25	24	12	38	6.5	53.5	13	3.5	5 (Max. 16.5)	70
MY1M32	29	14	50	8.5	67	17	4.5	8 (Max. 20)	88
MY1M40	35	17	57	10	83	17	4.5	9 (Max. 25)	104
MY1M50	40	20	66	14	106	26	5.5	13 (Max. 33)	128
MY1M63	52	26	77	14	129	31	5.5	13 (Max. 38)	152

With low load shock absorber + Adjustment bolt MY1M Bore size — Stroke L

(mm)

																, ,
Applicable size	Е	EA	EB	EC	EY	F	FB	FC	FH	FW	h	S	Т	TT	W	Shock absorber model
MY1M16	14.6	7	30	5.8	39.5	4	_	14	_	_	3.6	40.8	6	5.4 (Max. 11)	58	RB0806
MY1M20	20	10	32	5.8	45.5	4	_	14	_	_	3.6	40.8	6	5 (Max. 11)	58	RB0806
MY1M25	24	12	38	6.5	53.5	6	54	13	13	66	3.5	46.7	7	5 (Max. 16.5)	70	RB1007
MY1M32	29	14	50	8.5	67	6	67	17	16	80	4.5	67.3	12	8 (Max. 20)	88	RB1412
MY1M40	35	17	57	10	83	6	78	17	17.5	91	4.5	67.3	12	9 (Max. 25)	104	RB1412
MY1M50	40	20	66	14	106	6	_	26	_	_	5.5	73.2	15	13 (Max. 33)	128	RB2015
MY1M63	52	26	77	14	129	6	_	31	_		5.5	73.2	15	13 (Max. 38)	152	RB2015

SMC

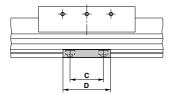

D
-X

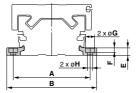
Technical
Data

MY1M Series

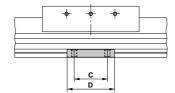
Stroke Adjustment Unit

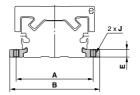
With high load shock absorber + Adjustment bolt MY1M Bore size - Stroke H


* Since dimension EY of the H type unit is greater than the table top height (dimension H), when mounting a workpiece that exceeds the overall length (dimension L) of the slide table, allow a clearance of dimension "a" or larger on the workpiece side.


table, anow a cloaran	00 01 011		u 0	go. o	1110 1101	npiooo i	oido.										
Applicable bore size	E	EA	EB	EC	EY	F	FB	FC	FH	FW	h	S	T	TT	W	Shock absorber model	а
MY1M20	20	10	32	7.7	50	5	_	14	—	—	3.5	46.7	7	5 (Max. 11)	58	RB1007	5
MY1M25	24	12	38	9	57.5	6	52	17	16	66	4.5	67.3	12	5 (Max. 16.5)	70	RB1412	4.5
MY1M32	29	14	50	11.5	73	8	67	22	22	82	5.5	73.2	15	8 (Max. 20)	88	RB2015	6
MY1M40	35	17	57	12	87	8	78	22	22	95	5.5	73.2	15	9 (Max. 25)	104	RB2015	4
MY1M50	40	20	66	18.5	115	8		30			11	99	25	13 (Max. 33)	128	RB2725	9
MY1M63	52	26	77	19	138.5	8	_	35	_	_	11	99	25	13 (Max. 38)	152	RB2725	9.5

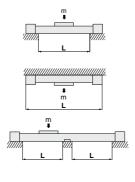
Mechanically Jointed Rodless Cylinder MY1M Series Slide Bearing Guide Type

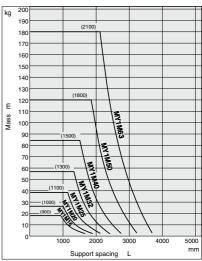

Side Support


Side support A MY-S□A

Side support B MY-S□B

Model	Applicable bore size	Α	В	С	D	Е	F	G	Н	J
MY-S16A	MY1M16	61	71.6	15	26	4.9	3	6.5	3.4	M4 x 0.7
MY-S20A	MY1M20	67	79.6	25	38	6.4	4	8	4.5	M5 x 0.8
MY-S25A	MY1M25	81	95	35	50	8	5	9.5	5.5	M6 x 1
MY-S32A	MY1M32	100	118	45	64	11.7	6	11	6.6	M8 x 1.25
MY-S40A	MY1M40	120	142	55	80	14.8	8.5	14	9	M10 x 1.5
W 1-540B	MY1M50	142	164	95	80	14.8	0.5	14	9	INITO X 1.5
MY-S63A	MY1M63	172	202	70	100	18.3	10.5	17.5	11.5	M12 x 1.75


^{*} A set of side supports consists of a left support and a right support.


Guide for Side Support Application

For long stroke operation, the cylinder tube may be deflected depending on its own weight and the load mass. In such a case, use a side support in the middle section. The spacing (L) of the support must be no more than the values shown in the graph on the right.

- 1. If the cylinder mounting surfaces are not measured accurately, using a side support may cause poor operation. Therefore, be sure to level the cylinder tube when mounting. Also, for long stroke operation involving vibration and impact, use of a side support is recommended even if the spacing value is within the allowable limits shown in the graph.
- 2. Support brackets are not for mounting; use them solely for providing support.

MY1B MY1H

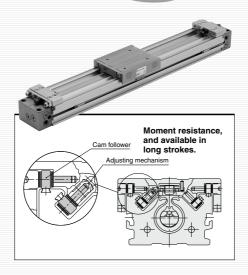
MY1B

MY1M MY1C

MY1H

MY1 нт MY1 $\square W$

MY2C MY2


H/HT MY3A MY3B MY3M

D-□

-X□ Technical

MY1B

MY1H MY1B

MY1M

MY1C

MY1H MY1 HT

MY1 □W

MY2C MY2 H/HT MY3A MY3B

MY3M

MY1C Series Prior to Use

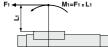
Maximum Allowable Moment/Maximum Load Mass

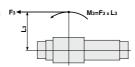
Model	Bore size	Maximum a	Illowable mo	ment (N·m)	Maxim	um load ma	ss (kg)
Model	(mm)	M ₁	M2	Мз	m1	m ₂	m3
	16	6.0	3.0	2.0	18	7	2.1
	20	10	5.0	3.0	25	10	3
	25	15	8.5	5.0	35	14	4.2
MY1C	32	30	14	10	49	21	6
	40	60	23	20	68	30	8.2
	50	115	35	35	93	42	11.5
	63	150	50	50	130	60	16

The above values are the maximum allowable values for moment and load. Refer to each graph regarding the maximum allowable moment and maximum allowable load for a particular piston speed.

Maximum Allowable Moment

Select the moment from within the range of operating limits shown in the graphs. Note that the maximum allowable load value may sometimes be exceeded even within the operating limits shown in the graphs. Therefore, also check the allowable load for the selected conditions.


Load mass (kg)



Moment (N·m)

<Calculation of guide load factor>

- 1. Maximum allowable load (1), static moment (2), and dynamic moment (3) (at the time of impact with stopper) must be examined for the selection calculations.
 - * To evaluate, use ν a (average speed) for (1) and (2), and ν (collision speed $\nu = 1.4\nu$ a) for (3). Calculate mmax for (1) from the maximum allowable load graph (m1, m2, m3) and Mmax for (2) and (3) from the maximum allowable moment graph (M1, M2, M3).

	Sum of guide $\Sigma\alpha$	Load mass [m]	Static moment [M] (1)	Dynamic moment [M _E] ⁽²⁾ < 1	
ı	load factors 200	Maximum allowable load [m max]	Allowable static moment [Mmax]	Allowable dynamic moment [Memax]	

Note 1) Moment caused by the load, etc., with cylinder in resting condition.

Note 2) Moment caused by the impact load equivalent at the stroke end (at the time of impact with stopper). Note 3) Depending on the shape of the workpiece, multiple moments may occur. When this happens, the sum of the load factors ($\Sigma \alpha$) is the total of all such moments.

2. Reference formula [Dynamic moment at impact]

Use the following formulae to calculate dynamic moment when taking stopper impact into consideration.

m: Load mass (kg)

F: Load (N)

FE: Load equivalent to impact (at impact with stopper) (N)

υa: Average speed (mm/s)

M: Static moment (N·m)

$$υ = 1.4υa \text{ (mm/s)} F_E = 1.4υa · δ · m · g$$

$$∴ M_E = \frac{1}{2} · ^{Note 5} · F_E · L_1 = 4.57 ∪ a δ m L_1 (N·m)$$

 $\therefore \mathbf{M}_{E} = \frac{1}{3} \cdot F_{E} \cdot L_{1} = 4.57 \cdot \lambda a \delta m L_{1} (N \cdot m)$

Note 4) 1.4 Vaδ is a dimensionless coefficient for calculating impact force.

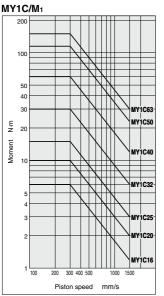
3. For detailed selection procedures, refer to pages 1280 and 1281.

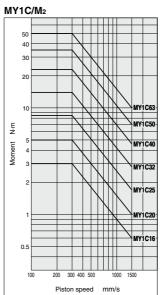
υ: Collision speed (mm/s)

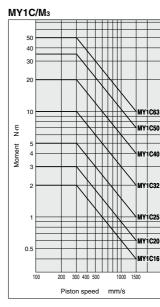
L1: Distance to the load's center of gravity (m)

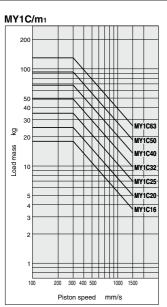
ME: Dynamic moment (N-m)

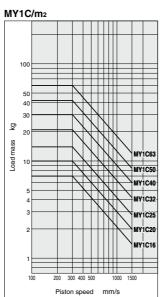
δ: Damper coefficient At collision: $\upsilon = 1.4\upsilon a$ With rubber bumper = 4/100(MY1B10, MY1H10) With air cushion = 1/100

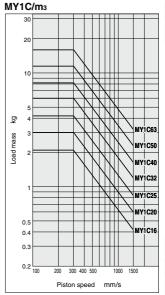

With shock absorber = 1/100 Gravitational acceleration (9.8 m/s²)


Note 5) Average load coefficient (= $\frac{1}{3}$): This coefficient is for averaging the maximum load moment at the time of stopper impact according to service life calculations.


Maximum Load Mass


Select the load from within the range of limits shown in the graphs. Note that the maximum allowable moment value may sometimes be exceeded even within the operating limits shown in the graphs. Therefore, also check the allowable moment for the selected conditions.


Prior to Use MY1C Series



D- D- Technical Data

MY1B

MY1H

MY1B

MY1M

MY1C

MY1H

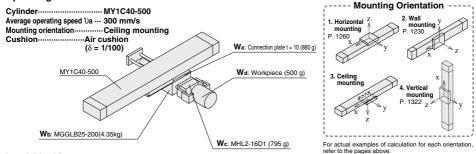
MY1

MY1

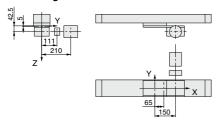
□W MY2C MY2 H/HT

MY3A MY3B

MY3M


ΗT

MY1C Series Model Selection


Following are the steps for selecting the most suitable MY1C series to your application.

Calculation of Guide Load Factor

1. Operating Conditions

2. Load Blocking

Mass and Center of Gravity for Each Workpiece

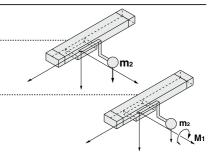
u				
Workpiece no.	Mass	С	enter of gravi	ty
Wn	m _n	X-axis X _n	Y-axis Yn	Z-axis Z n
Wa	0.88 kg	65 mm	0 mm	5 mm
Wb	4.35 kg	150 mm	0 mm	42.5 mm
Wc	0.795 kg	150 mm	111 mm	42.5 mm
Wd	0.5 kg	150 mm	210 mm	42.5 mm

n=a, b, c, d

3. Composite Center of Gravity Calculation

$$\begin{split} & \mathbf{m}_2 = \Sigma m_n \\ & = 0.88 + 4.35 + 0.795 + 0.5 = \textbf{6.525 kg} \\ & \mathbf{X} = \frac{1}{m_2} \times \Sigma \left(\mathbf{m}_n \times \mathbf{x}_n \right) \\ & = \frac{1}{6.525} \left(0.88 \times 65 + 4.35 \times 150 + 0.795 \times 150 + 0.5 \times 150 \right) = \textbf{138.5 mm} \\ & \mathbf{Y} = \frac{1}{m_2} \times \Sigma \left(\mathbf{m}_n \times \mathbf{y}_n \right) \\ & = \frac{1}{6.525} \left(0.88 \times 0 + 4.35 \times 0 + 0.795 \times 111 + 0.5 \times 210 \right) = \textbf{29.6 mm} \\ & \mathbf{Z} = \frac{1}{m_2} \times \Sigma \left(\mathbf{m}_n \times \mathbf{z}_n \right) \\ & = \frac{1}{6.525} \left(0.88 \times 5 + 4.35 \times 42.5 + 0.795 \times 42.5 + 0.5 \times 42.5 \right) = \textbf{37.4 mm} \end{split}$$

4. Calculation of Load Factor for Static Load

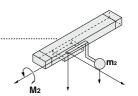

 m_2 : Mass $m_2\,max~(\text{from (1) of graph MY1C}/m_2) = 30~(\text{kg}) - \cdots - \cdots$ Load factor $\Omega_1=m_2/m_2\,max=6.525/30=0.22$

M₁: Moment

 $M_1 \text{ max}$ (from (2) of graph MY1C/ M_1) = 60 (N·m).....

 $M_1 = m_2 \times a \times X = 6.525 \times 9.8 \times 138.5 \times 10^{-3} = 8.86 \text{ (N·m)}$

Load factor $OL_2 = M_1/M_1 max = 8.86/60 = 0.15$


Model Selection MY1C Series

M₂: Moment

 $M_2 \max$ (from (3) of graph MY1C/ M_2) = 23.0 (N·m).....

 $M_2 = m_2 \times q \times Y = 6.525 \times 9.8 \times 29.6 \times 10^{-3} = 1.89 \text{ (N·m)}$

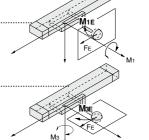
Load factor $Ol_3 = M_2/M_2 max = 1.89/23.0 = 0.08$

5. Calculation of Load Factor for Dynamic Moment -

Equivalent load FE at impact

$$\mathbf{F}_{E} = 1.4 \text{ Va } \times \delta \times \mathbf{m} \times \mathbf{g} = 1.4 \times 300 \times \frac{1}{100} \times 6.525 \times 9.8 = 268.6 \text{ (N)}$$

M_{1E}: Moment


M_{1E} max (from (4) of graph MY1C/M₁ where 1.4va = 420 mm/s) = 42.9 (N·m).....

$$\mathbf{M}_{1E} = \frac{1}{3} \times \mathbf{F}_{E} \times \mathbf{Z} = \frac{1}{3} \times 268.6 \times 37.4 \times 10^{-3} = 3.35 \text{ (N·m)}$$

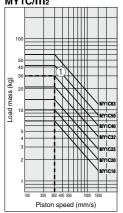
Load factor $OL_4 = M_1 E/M_1 E max = 3.35/42.9 = 0.08$

M_{3E}: Moment

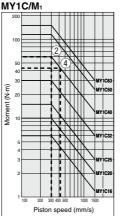
$$\mathbf{M}_{3E} = \frac{1}{3} \times \mathbf{F}_{E} \times \mathbf{Y} = \frac{1}{3} \times 268.6 \times 29.6 \times 10^{-3} = 2.65 \text{ (N·m)}$$

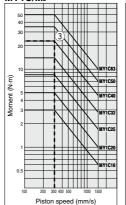
6. Sum and Examination of Guide Load Factors -

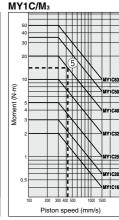
$$\sum_{\mathcal{U}} = \mathcal{O}_{\!\scriptscriptstyle 1} + \mathcal{O}_{\!\scriptscriptstyle 2} + \mathcal{O}_{\!\scriptscriptstyle 3} + \mathcal{O}_{\!\scriptscriptstyle 4} + \mathcal{O}_{\!\scriptscriptstyle 6} = \textbf{0.72} \leq \textbf{1}$$


The above calculation is within the allowable value, and therefore the selected model can be used. Select a shock absorber separately.

In an actual calculation, when the total sum of guide load factors α in the formula above is more than 1, consider either decreasing the speed, increasing the bore size, or changing the product series. This calculation can be easily made using the "SMC Pneumatics CAD System".


MY1C/Ma


Load Mass


MY1C/m₂

Allowable Moment

MY1B MY1H

MY1B

MY1M

MY1C MY1H

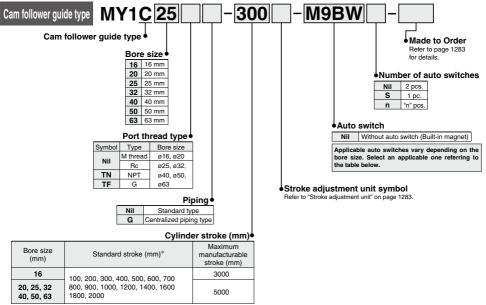
MY1 нт MY1 $\square W$

MY2C MY2

H/HT MY3A MY3B

MY3M

D-□



Mechanically Jointed Rodless Cylinder Cam Follower Guide Type

MY1C Series

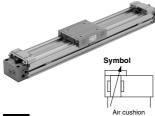
Ø16, Ø20, Ø25, Ø32, Ø40, Ø50, Ø63

How to Order

[•] The stroke can be manufactured up to the maximum stroke from 1 mm stroke in 1 mm increments. However, when the stroke is 49 mm or less, the air cushion capability lowers and multiple auto switches cannot be mounted. Pay special attention to this point. Also when exceeding a 2000 mm stroke, specify "XB11" at the end of the model number For details. Refer to the "Made to Order's Describitations"

Applicable Auto Switches/Refer to pages 1575 to 1701 for further information on auto switches.

		Florida	light	140	L	oad volta	ge		Auto swit	ch mode	I	Lead	wire l	length	h (m)	Pre-wired																			
Туре	Special function	Electrical entry	ator	Wiring (Output)	7	iC	AC	Perper	ndicular	In-l	ine	0.5		0	9	connector	Applica	ble load																	
		Citaly	Indic	(Output)		·C	AC	ø16, ø20	ø25 to ø63	ø16, ø20	ø25 to ø63	(Nil)	(M)	(L)	(Z)	COTTITUCTO																			
£				3-wire (NPN)		5 V. 12 V		M9NV		Ms	9N	•	•	•	0	0	IC circuit																		
switch				3-wire (PNP)		J V, 12 V		M9	M9PV		9P	•	•	•	0	0	IC CITCUIT																		
				2-wire		12 V		M9	BV	Ms	9B	•	•	•	0	0	_																		
anto	Diagnostic indication (2-color indicator) Gromm	Grommet Yes	Grommet Yes	Grommet Yes	Grommet Yes		3-wire (NPN)		5 V, 12 V		M9N	1MA	M9	NW	•	•	•	0	0	IC circuit															
						Grommet Yes	Grommet Yes	Grommet Yes	Grommet	Grommet	Grommet		Yes	3-wire (PNP)	24 V	J V, 12 V	_	M9F	νwv	M9	PW	•	•	•	0	0	IC CITCUIT	Relay, PLC							
state											2-wire		12 V		M9E	3WV	M9	BW	•	•	•	0	0	_	1 LO										
S	***									3-wire (NPN)	1	5 V 12 V		M9N	AV*1	M9N	IA*1	0	0	•	0	0	IC circuit												
Solid	Water resistant (2-color indicator)																				3-wire (PNP)	,	5 V, 12 V	', 12 V	M9P	AV*1	M9F	PA*1	0	0	•	0	0	IC CITCUIT	
Ň	(E color iridicator)																			2-wire		12 V	12 V	M9B	AV*1	M9E	3A*1	0	0	•	0	0	_		
_ 달	·		Yes	3-wire (NPN equivalent)	_	5 V	_	A96V	_	A96	Z76	•	_	•	_	_	IC circuit	_																	
Reed auto switch		Grommet	165	2-wire	24 V 12 V 100 V A93V	A93V*2	_	A93	Z73	•	•	•	•		_	Relay,																			
aft a					No	2-wire	24 V	12 V	100 V or less	A90V	_	A90	Z80	•	_	•	-	_	IC circuit	PLC															


- *1 Water resistant type auto switches can be mounted on the above models, but in such case SMC cannot guarantee water resistance Consult with SMC regarding water resistant types with the above model numbers.
- Consult with SMC regarding water resistant types with the *2 1 m type lead wire is only applicable to D-A93.
- * Lead wire length symbols: 0.5 m Nil (Example) M9NW
- * Solid state auto switches marked with "O" are produced upon receipt of order.
- 1 m M (Example) M9NWM 3 m L (Example) M9NWL 5 m Z (Example) M9NWZ
- Separate switch spacers (BMG2-012) are required to retrofit auto switches (M9 type) on cylinders ø25 to ø63.
- ø25 to ø63.
- * There are other applicable auto switches than listed above. For details, refer to page 1333
- * For details about auto switches with pre-wired connector, refer to pages 1648 and 1649.

 * Auto switches are shipped together (not assembled). (Refer to pages 1331 to 1333 for the details of auto switch mounting.)

1282

Mechanically Jointed Rodless Cylinder Cam Follower Guide Type MY1C Series

Made to Order: Individual Specifications (For details, refer to page 1334.)

Symbol	Specifications
-X168	Helical insert thread specifications

Made to Order Specifications

Click here for details									
Symbol	Specifications								
-XB11	Long stroke								

-XB22 Shock absorber soft type RJ series type -XC56 With knock pin hole -XC67 NBR rubber lining in dust seal band

Specifications

Bore size (r	mm)	16	20	25	32	40	50	63				
Fluid		Air										
Action			Double acting									
Operating pr	essure range	0.15 to 0.8 N	0.15 to 0.8 MPa 0.1 to 0.8 MPa									
Proof pres	sure	1.2 MPa										
Ambient and fl	uid temperature	5 to 60°C										
Cushion		Air cushion										
Lubrication	n	Non-lube										
Stroke leng	th tolerance	1000 or less *1.8 1001 to 3000 *2.8		2700 0	or less ^{+1.8} ,	2701 to 5	000 +2.8					
Piping	Front/Side port	M5 x 0.8		Rc	1/8	Rc 1/4	Rc	3/8				
port size	Bottom port	ø4		Ø	6	ø8	ø.	10				

Piston Speed

В	ore size (mm)	16 to 63
Without stroke a	djustment unit	100 to 1000 mm/s
Stroke	A unit	100 to 1000 mm/s ⁽¹⁾
adjustment unit	L unit and H unit	100 to 1500 mm/s ⁽²⁾

Note 1) Be aware that when the stroke adjustment range is increased by manipulating the adjustment bolt, the air cushion capacity decreases. Also, when exceeding the air cushion stroke ranges on page 1286, the piston speed should be 100 to 200 mm per second.

Note 2) The piston speed is 100 to 1000 mm/s for centralized piping.

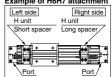
Note 3) Use at a speed within the absorption capacity range. Refer to page 1286.

Stroke Adjustment Unit Specifications


Bore size	(mm)	1	6		20			25			32			40			50			63	
Unit symb	ool	Α	L	Α	L	Н	Α	L	Н	Α	L	Н	Α	L	Н	Α	L	Н	Α	L	Н
Configura Shock ab model	sorber		RB 0806 + with adjustment bolt	With adjustment bolt	RB 0806 + with adjustment bolt	RB 1007 + with adjustment bolt	With adjustment bolt	RB 1007 + with adjustment bolt	RB 1412 + with adjustment bolt	With adjustment bolt	RB 1412 + with adjustment bolt	RB 2015 with adjustment bolt	With adjustment bolt	RB 1412 + with adjustment bolt	+ with	With adjustment bolt	RB 2015 with adjustment bolt	WED	With adjustment bolt	RB 2015 + with adjustment bolt	RB 2725 + with adjustment bolt
Stroke adjust-	Without spacer	0 to	-5.6	() to -6		01	to –11.	5	() to -1:	2	C	to -16	ć	0	to -20)	C	to -25	5
ment range by intermediate	With short spacer	-5.6 to	-11.2	-6	6 to -12	2	-11	.5 to –	23		2 to -	24	-1	6 to -3	32	-2	!0 to −4	10	-2	25 to –5	50
fixing spacer (mm)	With long spacer	-11.2 to	0 –16.8	-1	2 to -1	8	-23	to -34	1.5	-2	24 to ∹	36	-3	2 to -4	18	-4	0 to -6	60	-5	i0 to −7	75

^{*} Stroke adjustment range is applicable for one side when mounted on a cylinder.

Stroke Adjustment Unit Symbol


J	IUKE A	Right side stroke adjustment unit											
						Right si	ide stroke	e adjustm	ent unit				
			Without	A: With adjustment bolt		L: With low load shock absorber + Adjustment bolt			H: With high load shock absorber + Adjustment bolt				
			unit		With short spacer	With long spacer		With short spacer	With long spacer		With short spacer	With long spacer	
unit	Wit	hout unit	Nil	SA	SA6	SA7	SL	SL6	SL7	SH	SH6	SH7	
≣	A: With adjustment bolt		AS	Α	AA6	AA7	AL	AL6	AL7	AH	AH6	AH7	
ē		With short spacer	A6S	A6A	A6	A6A7	A6L	A6L6	A6L7	A6H	A6H6	A6H7	
adjustment		With long spacer	A7S	A7A	A7A6	A7	A7L	A7L6	A7L7	A7H	A7H6	A7H7	
adj		oad shock absorber +	LS	LA	LA6	LA7	L	LL6	LL7	LH	LH6	LH7	
š	Adjustment	With short spacer	L6S	L6A	L6A6	L6A7	L6L	L6	L6L7	L6H	L6H6	L6H7	
stro	Adjustment bolt	With long spacer	L7S	L7A	L7A6	L7A7	L7L	L7L6	L7	L7H	L7H6	L7H7	
side	H: With high	load shock absorber +	HS	HA	HA6	HA7	HL	HL6	HL7	Н	HH6	HH7	
	Adjustment	With short spacer	H6S	H6A	H6A6	H6A7	H6L	H6L6	H6L7	Н6Н	H6	H6H7	
٩	bolt	With long spacer	H7S	H7A	H7A6	H7A7	H7L	H7L6	H7L7	H7H	H7H6	H7	

mounting diagram

Stroke adjustment unit

Example of H6H7 attachment

Shock Absorbers for L and H Units

Туре	Stroke adjustment	Bore size (mm)										
	unit	16	20	25	32	40	50	63				
Standard (Shock absorber/	L	RB0806		RB1007	RB1412		RB2015					
RB series)	Н	— RB1007		RB1412	RB2	.015	RB2725					
Shock absorber/ soft type RJ series mounted (-XB22)	L	RJ08	B06H	RJ1007H	RJ14	112H	_	_				
	Н	_	RJ1007H	I RJ1412H — —		_	_					

- * The shock absorber service life is different from that of the MY1C cylinder depending on operating conditions. Refer to the RB Series Specific Product Precautions for the replacement period.
- * Mounted shock absorber soft type RJ series (-XB22) is made to order specifications. For details, refer to page 1752.

Shock Absorber Specifications

one on Appendiculations										
Мо	RB 0806	RB 1007	RB 1412	RB 2015	RB 2725					
Max. energy	2.9	5.9	19.6	58.8	147					
Stroke abso	6	7	12	15	25					
Max. collision	1500									
Max. operating fre	quency (cycle/min)	80	70	45	25	10				
Spring	Extended	1.96	4.22	6.86	8.34	8.83				
force (N)	Retracted	4.22	6.86	15.98	20.50	20.01				
Operating tempe	Operating temperature range (°C)			5 to 60						
•										

^{*} The shock absorber service life is different from that of the MY1C cylinder depending on operating conditions. Refer to the RB Series Specific Product Precautions for the replacement period.

-X□ Technical

D-□

MY1B

MY1H

MY1B

MY1M

MY1H MY1 MY1 $\square W$

MY2C

H/HT

MY3A MY3B MY3M

^{*} Spacers are used to fix the stroke adjustment unit at an intermediate stroke position.

Theoretical Output

								(N)			
Bore size	Piston	Operating pressure (MPa)									
(mm)	area (mm²)	0.2	0.3	0.4	0.5	0.6	0.7	0.8			
16	200	40	60	80	100	120	140	160			
20	314	62	94	125	157	188	219	251			
25	490	98	147	196	245	294	343	392			
32	804	161	241	322	402	483	563	643			
40	1256	251	377	502	628	754	879	1005			
50	1962	392	588	784	981	1177	1373	1569			
63	3115	623	934	1246	1557	1869	2180	2492			

Note) Theoretical output (N) = Pressure (MPa) x Piston area (mm2)

Weight

							(kg
Bore size	Basic	Additional weight per each	Weight of moving	Side support bracket weight (per set)		ljustment u (per unit)	nit weight
(mm)	weight	ht 50 mm par of stroke		Type A and B	A unit weight	L unit weight	H unit weight
16	0.67	0.12	0.22	0.01	0.03	0.04	_
20	1.06	0.15	0.31	0.02	0.04	0.05	0.08
25	1.58	0.24	0.41	0.02	0.07	0.11	0.18
32	3.14	0.37	0.86	0.04	0.14	0.23	0.39
40	5.60	0.52	1.49	0.08	0.25	0.34	0.48
50	10.14	0.76	2.59	0.08	0.36	0.51	0.81
63	16.67	1.10	4.26	0.17	0.68	0.83	1.08

Calculation: (Example) MY1C25-300A

 Basic weight------1.58 kg Cylinder stroke ----- 300 stroke Additional weight ------··· 0.24/50 stroke $1.58 + 0.24 \times 300/50 + 0.07 \times 2 \cong 3.16 \text{ kg}$ Weight of A unit----- 0.07 kg

> Stroke adjustment unit Intermediate fixing spacer

Option

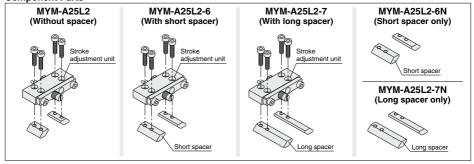
Stroke Adjustment Unit Part No.

Bore size ●

16	16 mm
20	20 mm
25	25 mm
32	32 mm
40	40 mm
50	50 mm
63	63 mm

Unit no. Mounting Symbol Stroke adjustment unit position A1 Left A unit A2 Right L1 Left Lunit L2 Right H1 Left H unit H2 Right

Note 1) Refer to page 1283 for details about


adjustment range. Note 2) A and L unit only for ø16

Intermediate fixing spacer Without spacer 6□ Short spacer

- * Spacers are used to fix the stroke adjustment unit at an
- intermediate stroke position.
- * Spacers are shipped for a set of two

Component Parts

Side Support Part No.

Bore size (mm)	16	20	25	32	40	50	63
Side support A	MY-S16A	MY-S20A	MY-S25A	MY-S32A	MY-S	MY-S63A	
Side support B	MY-S16B	MY-S20B	MY-S25B	MY-S32B	MY-S	MY-S63B	

For details about dimensions, etc., refer to page 1295.

A set of side supports consists of a left support and a right support.

MY1B

MY1H MY1B

MY1M

MY1C

MY1H

MY1 HT MY1

MY2C

MY2 H/HT MY3A MY3B

MY3M

Cushion Capacity

Cushion Selection

<Air cushion>

Air cushions are a standard feature on mechanically jointed rodless cylinders.

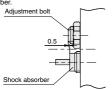
The air cushion mechanism is incorporated to prevent excessive impact of the piston at the stroke end during high speed operation. The purpose of air cushion, thus, is not to decelerate the piston near the stroke end.

The ranges of load and speed that air cushions can absorb are within the air cushion limit lines shown in the graphs.

Stroke adjustment unit with shock absorbers. Use this unit when operating with a load or speed exceeding the air cushion limit line, or when cushioning is necessary because the cylinder stroke is outside of the effective air cushion stroke range due to stroke adjustment.

L unit

Use this unit when the cylinder stroke is outside of the effective air cushion range even if the load and speed are within the air cushion limit line, or when the cylinder is operated in a load and speed range above the air cushion limit line or below the L unit limit line.

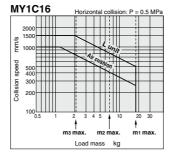

H unit

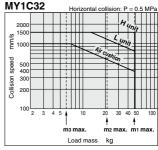
Use this unit when the cylinder is operated in a load and speed range above the L unit limit line and below the H unit limit line.

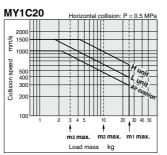
⚠ Caution

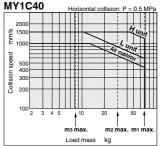
Refer to the figure below when using the adjustment bolt to perform stroke adjustment

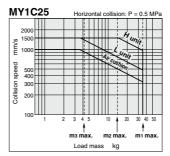
When the effective stroke of the shock absorber decreases as a result of stroke adjustment, the absorption capacity decreases dramatically. Secure the adjustment bolt at the position where it protrudes approximately 0.5 mm from the shock absorber.

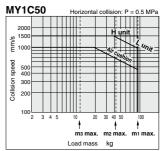

Do not use a shock absorber together with air cushion.

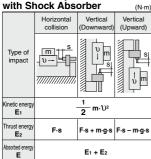

(mm)


Air Cushion Stroke


Bore size (mm)	Cushion stroke
16	12
20	15
25	15
32	19
40	24
50	30
63	37


Absorption Capacity of Air Cushion and Stroke Adjustment Units




Tightening Torque for Stroke Adjustment Unit Holding Bolts (N-m)

•	-	(14-111)
Bore size (mm)	Unit	Tightening torque
40	Α	
16	L	0.7
	Α	
20	L	1.8
	Н	
	Α	
25	L	3.5
	Н	
	Α	
32	L	5.8
	Н	
	Α	
40	L	13.8
	Н	
	Α	
50	L	13.8
	Н	
	Α	
63	L	27.5
	Н	

Tightening Torque for Stroke Adjustment Unit Lock Plate Holding Bolts

Bore size (mm)	Unit	Tightening torque
25	L	1.2
25	Н	3.3
32	L	3.3
32	Н	10
40	L	3.3
40	Н	10

Calculation of Absorbed Energy for Stroke Adjustment Unit

Symbol

v: Speed of impact object (m/s) F: Cylinder thrust (N)

- s: Shock absorber stroke (m)
- m: Mass of impact object (kg)
- g: Gravitational acceleration (9.8 m/s²)

Note) The speed of the impact object is measured at the time of impact with the shock absorber.


⚠Precautions

Be sure to read this before handling the products. Refer to back page 50 for Safety Instructions and pages 3 to 12 for Actuator and Auto Switch Precautions.

⚠ Caution

Use caution not to get your hands caught in the unit.

 When using a product with stroke adjustment unit, the space between the slide table (slider) and the stroke adjusting unit becomes narrow at the stroke end, causing a danger of hands getting caught. Install a protective cover to prevent direct contact with the human body.

<Fastening of unit>

The unit can be secured by evenly tightening the four unit holding bolts.

. Caution

Do not operate with the stroke adjustment unit fixed in an intermediate position.

When the stroke adjusting unit is fixed in an intermediate position, slippage can occur depending on the amount of energy released at the time of an impact. In such cases, as a stroke adjustment unit with the spacer for intermediate securing is available, it is recommended to use it.

For other lengths, please consult with SMC (Refer to "Tightening Torque for Stroke Adjustment Unit Holding Bolts".)

<Stroke adjustment with adjusting bolt>

Loosen the adjusting bolt lock nut, and adjust the stroke from the lock plate side using a hexagon wrench. Retighten the lock nut.

<Stroke adjustment with shock absorber>

Loosen the two lock plate holding bolts, turn the shock absorber and adjust the stroke. Then, uniformly tighten the lock plate holding bolts to secure the shock absorber.

Take care not to over-tighten the holding bolts. (Except ø16, ø20, ø50, ø63) (Refer to "Tightening Torgue for Stroke Adjusting Unit Lock Plate Holding Bolts".)

Note) Although the lock plate may slightly bend due to tightening of the lock plate holding bolt, this does not a affect the shock absorber and locking function.

> MY1B MY1H

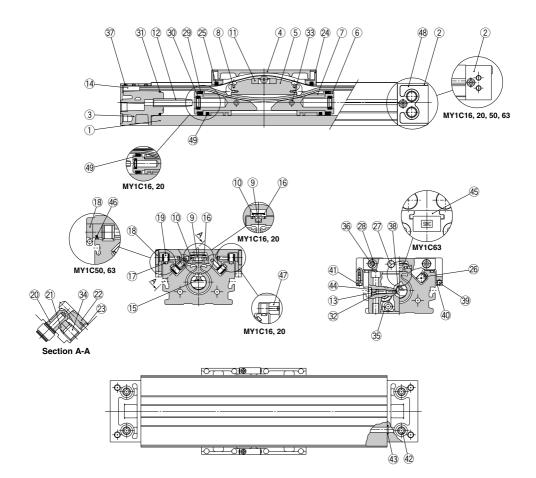
MY1B

MY1M MY1C

MY1H MY1 HT

MY1 □W MY2C

> MY2 H/HT MY3A MY3B


MY3M

MY1C Series

Construction: Ø16 to Ø63

MY1C16 to 63

MY1C16 to 63

Component Parts

No.	Description	Material	Note
1	Cylinder tube	Aluminum alloy	Hard anodized
2	Head cover WR	Aluminum alloy	Painted
3	Head cover WL	Aluminum alloy	Painted
4	Slide table	Aluminum alloy	Electroless nickel plated
5	Piston yoke	Aluminum alloy	Chromated
6	Piston	Aluminum alloy	Chromated
7	Wear ring	Special resin	
8	Belt separator	Special resin	
9	Guide roller	Special resin	
10	Guide roller shaft	Stainless steel	
11	Coupler	Sintered iron material	
12	Cushion ring	Aluminum alloy	Anodized
13	Cushion needle	Rolled steel	Nickel plated
14	Belt clamp	Special resin	
17	Rail	Hard steel wire	
18	Cam follower cap	Special resin	(ø25 to ø40)
19	Cam follower	_	
20	Eccentric gear	Stainless steel	
21	Gear bracket	Stainless steel	
22	Adjustment gear	Stainless steel	
23	Retaining ring	Stainless steel	

No.	Description	Material	Note
24	End Cover	Special resin	
26	Backup plate	Special resin	
27	Stopper	Carbon steel	Nickel plated
28	Spacer	Stainless steel	
33	Spring pin	Carbon tool steel	
34	Hexagon socket head set screw	Chromium molybdenum steel	Black zinc chromated
35	Hexagon socket head cap screw	Chromium molybdenum steel	Chromated
36	Hexagon socket button head screw	Chromium molybdenum steel	Chromated
37	Hexagon socket head set screw	Chromium molybdenum steel	Black zinc chromated/Chromated
38	Hexagon socket head taper plug	Carbon steel	Chromated
39	Magnet		
40	Magnet holder	Special resin	
41	Hexagon socket head cap screw	Chromium molybdenum steel	Chromated
42	Hexagon socket head taper plug	Carbon steel	Chromated
44	Type CR retaining ring	Spring steel	
45	Head plate	Aluminum alloy	Hard anodized (ø63)
46	Side scraper	Special resin	(ø50 to ø63)
47	Bushing	Aluminum alloy	(ø16 to ø20)
48	Port cover	Special resin	(ø25 to ø40)
49	Lube-retainer	Special resin	

MY1B

MY1H MY1B

MY1M

MY1C

MY1H

MY1 HT MY1 □W

MY2C

MY2 H/HT

MY3B MY3M

Replacement Part: Seal Kit

No.	Description	Qty.	MY1C16	MY1C20	MY1C25	MY1C32	MY1C40	MY1C50	MY1C63	
15	Seal belt	1	MY16-16C-Stroke	MY20-16C-Stroke	MY25-16C-Stroke	MY32-16C-Stroke	MY40-16C-Stroke	MY50-16C-Stroke	MY63-16A-Stroke	
16	Dust seal band	1	MY16-16B-Stroke	MY20-16B-Stroke	MY25-16B-Stroke	MY32-16B-Stroke	MY40-16B-Stroke	MY50-16B-Stroke	MY63-16B-Stroke	
32	O-ring	2	KA00309	KA00311	KA00311	KA00320	KA00402	KA00777	KA00777	
32	O-ring		(ø4 x ø1.8 x ø1.1)	(ø5.1 x ø3 x ø1.05)	(ø5.1 x ø3 x ø1.05)	(ø7.15 x ø3.75 x ø1.7)	(ø8.3 x ø4.5 x ø1.9)	_	-	
46	Side scraper	2	_	_	_	_	_	MYM50-15CK0502B	MYM63-15CK0503B	
25	Scraper	2								
29	Piston seal	2								
30	Cushion seal	2	MY1M16-PS	MY1M20-PS	MY1M25-PS	MY1M32-PS	MY1M40-PS	MY1M50-PS	MY1M63-PS	
31	Tube gasket	2								
43	O-ring	4								

SMC

Order with the following part number when only the grease pack is needed.

Grease pack part number: GR-S-010 (10 g), GR-S-020 (20 g)

Note) Two kinds of dust seal bands are available. Verify the type to use, since the part number varies depending on the treatmentof the hexagon socket head set screw ③.

A: Black zinc chromated → MY□□-16B-stroke, B: Nickel plated → MY□□-16BW-stroke

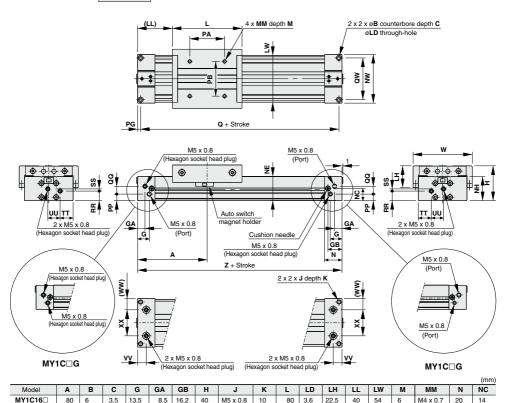
^{*} Seal kit includes 25, 29, 30, 31 and 43. Order the seal kit based on each bore size.

^{*} Seal kit includes a grease pack (10 g).

When ⓑ and ⓑ are shipped independently, a grease pack is included. (10 g per 1000 strokes)

58

7.5

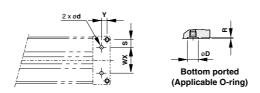

M5 x 0.8

25 17

200

50

MY1C16□/20□ - Stroke



																			(mm)
Model	NE	NH	NW	PA	PB	PG	PP	Q	QQ	QW	RR	SS	TT	UU	VV	W	ww	XX	Z
MY1C16□	28	27.7	56	40	40	3.5	7.5	153	9	48	11	2.5	15	14	10	68	13	30	160

40 4.5

12

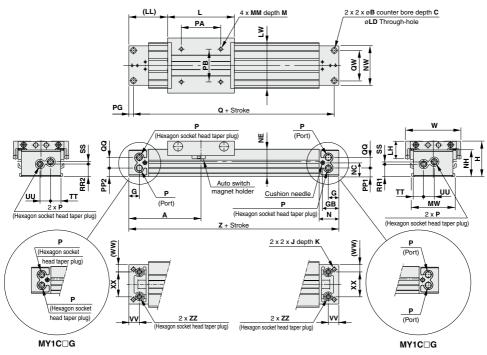
100 4.8 23

Hole Sizes for Centralized Piping on the Bottom

Model	WX	Y	S	d	D	R	Applicable O-ring
MY1C16□	30	6.5	9	4	8.4	1.1	C6
MY1C20□	32	8	6.5	4	8.4	1.1	

(Machine the mounting side to the dimensions below.)

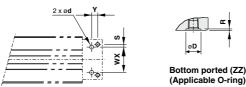
MY1C20□


MY1C20□

100 7.5 4.5 12.5 12.5 20 46 M6 x 1

Mechanically Jointed Rodless Cylinder Cam Follower Guide Type MY1C Series

Standard Type/Centralized Piping Type Ø25, Ø32, Ø40 Refer to page 1337 regarding centralized piping port variations.


MY1C25□/32□/40□ — Stroke

																							(mm)
Model	Α	В	С	G	GB	Н	J	K	L	LD	LH	LL	LW	М	MM	MW	N	NC	NE	NH	NW	P	PA
MY1C25□	110	9	5.5	17	24.5	54	M6 x 1	9.5	102	5.6	27	59	70	10	M5 x 0.8	66	30	21	41.8	40.5	60	Rc 1/8	60
MY1C32□	140	11	6.5	19	30	68	M8 x 1.25	16	132	6.8	35	74	88	13	M6 x 1	80	37	26	52.3	50	74	Rc 1/8	80
MY1C40□	170	14	8.5	23	36.5	84	M10 x 1.5	15	162	8.6	38	89	104	13	M6 x 1	96	45	32	65.3	63.5	94	Rc 1/4	100

"P" indicates cylinder supply ports.

																		(mm)
Model	PB	PG	PP1	PP2	Q	QQ	QW	RR1	RR2	SS	TT	UU	٧٧	W	ww	XX	Z	ZZ
MY1C25□	50	7	12.7	12.7	206	15.5	46	18.9	17.9	4.1	15.5	16	16	84	11	38	220	Rc 1/16
MY1C32□	60	8	15.5	18.5	264	16	60	22	24	4	21	16	19	102	13	48	280	Rc 1/16
MY1C40□	80	9	17.5	20	322	26	72	25.5	29	9	26	21	23	118	20	54	340	Rc 1/8

Hole Size for Centralized Piping on the Bottom

Model	wx	Y	S	d	D	R	Applicable O-ring
MY1C25□	38	9	4	6	11.4	1.1	C9
MY1C32□	48	11	6	6	11.4	1.1	Ca
MY1C40□	54	14	9	8	13.4	1.1	C11.2

(Machine the mounting side to the dimensions below.)

D
-X

Technical
Data

MY1B

MY1H

MY1B

MY1M

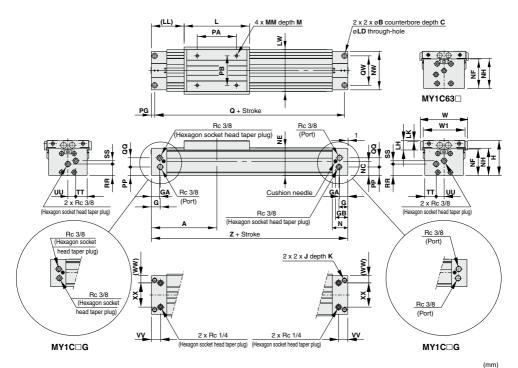
MY1C

MY1H

MY1 HT

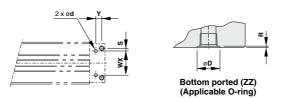
MY1 □W

MY2C


MY2 H/HT

MY3A MY3B MY3M

Standard Type/Centralized Piping Type ø50, ø63

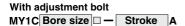

Refer to page 1337 regarding centralized piping port variations.

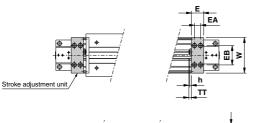
MY1C50□/63□ - Stroke

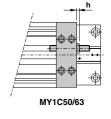
Model	Α	В	С	G	GA	GB	Н	J	K	L	LD	LH	LK	LL	LW	M	MM	N	NC	NE
MY1C50□	200	17	10.5	27	25	37.5	107	M14 x 2	28	200	11	29	2	100	128	15	M8 x 1.25	47	43.5	84.5
MY1C63□	230	19	12.5	29.5	27.5	39.5	130	M16 x 2	32	230	13.5	32.5	5.5	115	152	16	M10 x 1.5	50	60	104

																				(mm)
Model	NF	NH	NW	PA	PB	PG	PP	Q	QQ	QW	RR	SS	TT	UU	٧٧	W	W1	ww	XX	Z
MY1C50□	81	83.5	118	120	90	10	26	380	28	90	35	10	35	24	28	144	128	22	74	400
MY1C63□	103	105	142	140	110	12	42	436	30	110	49	13	43	28	30	168	152	25	92	460

Hole Size for Centralized Piping on the Bottom

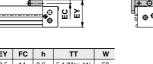

Model	WX	Y	S	d	D	R	Applicable O-ring
MY1C50□	74	18	8	10	17.5	1.1	C15
MY1C63□	92	18	9	10	17.5	1.1	C15


(Machine the mounting side to the dimensions above.)



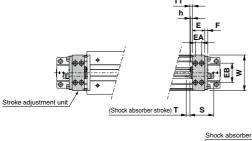
Mechanically Jointed Rodless Cylinder MY1C Series Cam Follower Guide Type

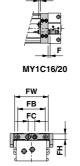
Stroke Adjustment Unit

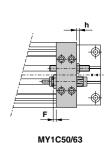


MY1B MY1H MY1B MY1M MY1C MY1H MY1 MY1 MY1

□W


MY2C MY2 H/HT MY3A MY3B





Applicable bore size	E	EA	FB	EC	EY	FC	n	11	VV
MY1C16	14.6	7	30	5.8	39.5	14	3.6	5.4 (Max. 11)	58
MY1C20	20	10	32	5.8	45.5	14	3.6	5 (Max. 11)	58
MY1C25	24	12	38	6.5	53.5	13	3.5	5 (Max. 16.5)	70
MY1C32	29	14	50	8.5	67	17	4.5	8 (Max. 20)	88
MY1C40	35	17	57	10	83	17	4.5	9 (Max. 25)	104
MY1C50	40	20	66	14	106	26	5.5	13 (Max. 33)	128
MY1C63	52	26	77	14	129	31	5.5	13 (Max. 38)	152

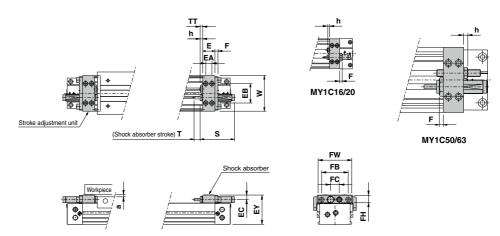
With low load shock absorber + Adjustment bolt MY1C Bore size — Stroke L

	Shoo	k ab	sorber
1		-	
	-1		- 4
<u> </u>	_ ©	ပ္ကု	_ ⊒
=	<u>*</u>		

																(mm)
Applicable bore size	Е	EA	EB	EC	EY	F	FB	FC	FH	FW	h	S	T	TT	W	Shock absorber model
MY1C16	14.6	7	30	5.8	39.5	4		14	_		3.6	40.8	6	5.4 (Max. 11)	58	RB0806
MY1C20	20	10	32	5.8	45.5	4	—	14	 —	—	3.6	40.8	6	5 (Max. 11)	58	RB0806
MY1C25	24	12	38	6.5	53.5	6	54	13	13	66	3.5	46.7	7	5 (Max. 16.5)	70	RB1007
MY1C32	29	14	50	8.5	67	6	67	17	16	80	4.5	67.3	12	8 (Max. 20)	88	RB1412
MY1C40	35	17	57	10	83	6	78	17	17.5	91	4.5	67.3	12	9 (Max. 25)	104	RB1412
MY1C50	40	20	66	14	106	6	_	26	_	_	5.5	73.2	15	13 (Max. 33)	128	RB2015
MY1C63	52	26	77	14	129	6		31	_		5.5	73.2	15	13 (Max. 38)	152	BB2015

-X - Technical Data

SMC

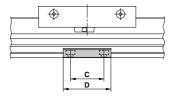

1293

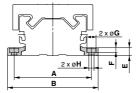
MY1C Series

Stroke Adjustment Unit

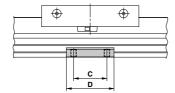
With high load shock absorber + Adjustment bolt

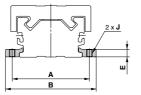
MY1C Bore size □ - Stroke H


* Since dimension EY of the H type unit is greater than the table top height (dimension H), when mounting a workpiece that exceeds the overall length (dimension L) of the slide table, allow a clearance of dimension "a" or larger on the workpiece side.


A - Paul I - Laure de la	Е	EA	EB	EC	EY		ED	FC	FH	FW	- L	_	_		147	0 1 1 1 1	-
Applicable bore size	E	EA	EB	EC	EY	F	FB	FC	FH	FW	h	5	-	TT	W	Shock absorber model	а
MY1C20	20	10	32	7.7	50	5	_	14		_	3.5	46.7	7	5 (Max. 11)	58	RB1007	5
MY1C25	24	12	38	9	57.5	6	52	17	16	66	4.5	67.3	12	5 (Max. 16.5)	70	RB1412	4.5
MY1C32	29	14	50	11.5	73	8	67	22	22	82	5.5	73.2	15	8 (Max. 20)	88	RB2015	6
MY1C40	35	17	57	12	87	8	78	22	22	95	5.5	73.2	15	9 (Max. 25)	104	RB2015	4
MY1C50	40	20	66	18.5	115	8		30			11	99	25	13 (Max. 33)	128	RB2725	9
MY1C63	52 26		77	19	138.5	8	_	35	_	_	11	99	25	13 (Max. 38)	152	RB2725	9.5

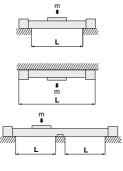
Mechanically Jointed Rodless Cylinder Cam Follower Guide Type MY1C Series

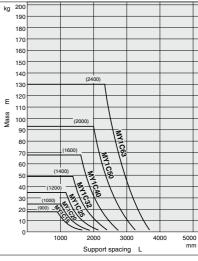

Side Support


Side support A MY-S□A

Side support B MY-S□B

										(mm)
Model	Applicable bore size	Α	В	С	D	E	F	G	Н	J
MY-S168	MY1C16	61	71.6	15	26	4.9	3	6.5	3.4	M4 x 0.7
MY-S20 ^A	MY1C20	67	79.6	25	38	6.4	4	8	4.5	M5 x 0.8
MY-S25 ⁸	MY1C25	81	95	35	50	8	5	9.5	5.5	M6 x 1
MY-S32å	MY1C32	100	118	45	64	11.7	6	11	6.6	M8 x 1.25
MY-S40A	MY1C40	120	142		-00	440				M10 1 5
W 1-5408	MY1C50	142	164	55	80	14.8	8.5	14	9	M10 x 1.5
MY-S63 ^A	MY1C63	172	202	70	100	18.3	10.5	17.5	11.5	M12 x 1.75


* A set of side supports consists of a left support and a right support.


Guide for Side Support Application

For long stroke operation, the cylinder tube may be deflected depending on its own weight and the load weight. In such a case, use a side support in the middle section. The spacing (L) of the support must be no more than the values shown in the graph on the right.

- 1. If the cylinder mounting surfaces are not measured accurately, using a side support may cause poor operation. Therefore, be sure to level the cylinder tube when mounting. Also, for long stroke operation involving vibration and impact, use of a side support is recommended even if the spacing value is within the allowable limits shown in the graph.
- 2. Support brackets are not for mounting; use them solely for providing support.

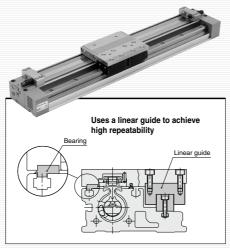
D-□ -X□ Technical

MY1B

MY1H MY1B

MY1M MY1C MY1H HT MY1 $\square W$

MY2C MY2


H/HT MY3A MY3B

MY3M

SMC

1295

End lock type capable of holding a position at the stroke end (Except bore size ∅10)

MY1B MY1H

MY1B

MY1M

MY1C

MY1 HT MY1

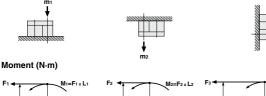
□W MY2C

MY2 H/HT MY3A MY3B

MY3M

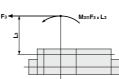
D-□ -X□

Technical Data


MY1H Series Prior to Use

Maximum Allowable Moment/Maximum Load Mass

Model	Bore size	Maximum a	allowable mo	ment (N·m)	Maximum load mass (kg)			
	(mm)	M1	M ₂	Мз	m1	m ₂	m3	
	10	0.8	1.1	0.8	6.1	6.1	6.1	
MY1H	16	3.7	4.9	3.7	10.8	10.8	10.8	
	20	11	16	11	17.6	17.6	17.6	


The above values are the maximum allowable values for moment and load. Refer to each graph regarding the maximum allowable moment and maximum allowable load for a particular piston speed.

Load mass (kg)

<Calculation of guide load factor>

- 1. Maximum allowable load (1), static moment (2), and dynamic moment (3) (at the time of impact with stopper) must be examined for the selection calculations.
 - * To evaluate, use value valfor (3). Calculate mmax for (1) from the maximum allowable load graph (m1, m2, m3) and Mmax for (2) and (3) from the maximum allowable moment graph (M₁, M₂, M₃).

Note 1) Moment caused by the load, etc., with cylinder in resting condition.

Note 2) Moment caused by the impact load equivalent at the stroke end (at the time of impact with stopper). Note 3) Depending on the shape of the workpiece, multiple moments may occur. When this happens, the sum of the load factors ($\Sigma \alpha$) is the total of all such moments.

2. Reference formula [Dynamic moment at impact]

Use the following formulae to calculate dynamic moment when taking stopper impact into consideration.

- m: Load mass (kg)
- F: Load (N)
- FE: Load equivalent to impact (at impact with stopper) (N)
- υa: Average speed (mm/s)
- M: Static moment (N-m)

$$\upsilon = 1.4\upsilon a \text{ (mm/s)} F_E = 1.4\upsilon a \cdot \delta^{\text{Note 4}}$$

 $\therefore \mathbf{M}_{E} = \frac{1}{3} \cdot F_{E} \cdot L_{1} = 4.57 \text{Va} \delta m L_{1} \text{ (N·m)}$

υ: Collision speed (mm/s)

L1: Distance to the load's center of gravity (m)

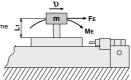
ME: Dynamic moment (N·m) δ: Damper coefficient

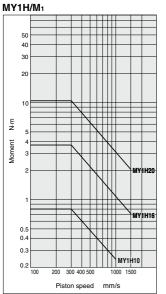
With rubber bumper = 4/100(MY1B10, MY1H10)

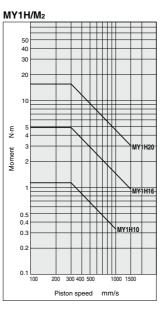
With air cushion = 1/100 With shock absorber = 1/100

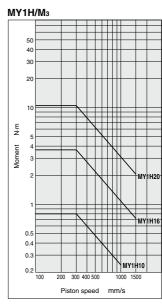
g: Gravitational acceleration (9.8 m/s²)

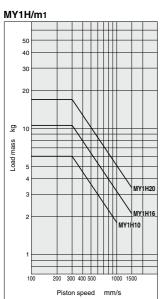
Note 4) $1.4 \mathrm{Va}\delta$ is a dimensionless coefficient for calculating impact force. Note 5) Average load coefficient (=3): This coefficient is for averaging the maximum load moment at the time of stopper impact according to service life calculations.

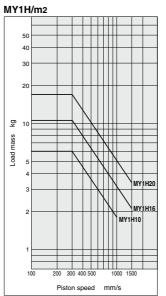

3. For detailed selection procedures, refer to pages 1300 and 1301.

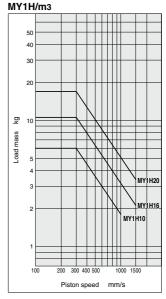

Maximum Allowable Moment


Select the moment from within the range of operating limits shown in the graphs. Note that the maximum allowable load value may sometimes be exceeded even within the operating limits shown in the graphs. Therefore, also check the allowable load for the selected conditions.


Maximum Load Mass


Select the load from within the range of limits shown in the graphs. Note that the maximum allowable moment value may sometimes be exceeded even within the operating limits shown in the graphs. Therefore, also check the allowable moment for the selected conditions.





-X - Technical Data

MY1B

MY1H

MY1B

MY1M

MY1C

MY1H

MY1 HT

MY1

MY2C MY2C MY2 H/HT

MY3A MY3B

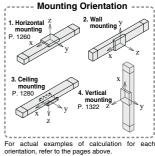
MY3M

SMC

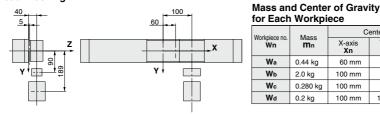
MY1H Series **Model Selection**

Following are the steps for selecting the most suitable MY1H series to your application.

Wc: MHL2-10D (280 g)


Calculation of Guide Load Factor

1. Operating Conditions -


Operating cylinder MY1H20-500 Average operating speed Va ... 300 mm/s

Mounting orientation Wall mounting

Cushion Air cushion (δ = 1/100) MY1H40-500 Wb: MGGLB20-100 (2 kg)

Wa: Connection plate t = 10 (440 g Wd: Workpiece (200 g) 2. Load Blocking

or Euch	or Edon Workpicoc										
Workpiece no.	Mass	Center of gravity									
Wn	m _n	X-axis Xn	Y-axis Yn	Z-axis Zn							
Wa	0.44 kg	60 mm	0 mm	5 mm							
Wb	2.0 kg	100 mm	0 mm	40 mm							
Wc	0.280 kg	100 mm	90 mm	40 mm							
Wd	0.2 kg	100 mm	189 mm	40 mm							

n=a, b, c, d

3. Composite Center of Gravity Calculation

$$m_3 = \Sigma m_n$$

= 0.44 + 2.0 + 0.280 + 0.2 = **2.92 kg**

$$\mathbf{X} = \frac{1}{\mathbf{m}_3} \times \Sigma (\mathbf{m}_n \times \mathbf{x}_n)$$

=
$$\frac{1}{2.95}$$
 (0.44 x 60 + 2.0 x 100 + 0.280 x 100 + 0.2 x 100) = **94.0 mm**

$$Y = \frac{1}{m_3} \times \Sigma (m_n \times y_n)$$

=
$$\frac{1}{2.95}$$
 (0.44 x 0 + 2.0 x 0 + 0.280 x 90 + 0.2 x 189) = **21.6 mm**

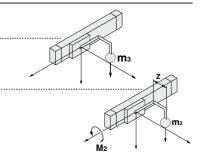
$$\mathbf{Z} = \frac{1}{\mathbf{m}_3} \times \Sigma \left(\mathbf{m}_n \times \mathbf{z}_n \right)$$

=
$$\frac{1}{2.95}$$
 (0.44 x 5 + 2.0 x 40 + 0.280 x 40 + 0.2 x 40) = **34.8 mm**

4. Calculation of Load Factor for Static Load

m₃: Mass

m₃ max (from (1) of graph MY1H/m₃) = 17.6 (kg)······

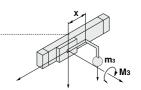

Load factor $\Omega_1 = m_3/m_3 \max = 2.92/17.6 = 0.17$

M₂: Moment

 $m_2 \max$ (from (2) of graph MY1H/M₂) = 16.0 (N·m).....

 $M_2 = m_3 \times q \times Z = 2.92 \times 9.8 \times 34.8 \times 10^{-3} = 1.00 \text{ (N} \cdot \text{m)}$

Load factor $CL_2 = M_2/M_2 max = 1.00/16.0 = 0.07$


Model Selection MY1H Series

M₃: Moment

M₃ max (from (3) of graph MY1H/M₃) = 11.0 (N·m)....

$$M_3 = m_3 \times g \times X = 2.92 \times 9.8 \times 94.0 \times 10^{-3} = 2.69 \text{ (N·m)}$$

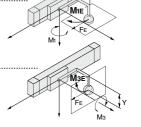
Load factor $\Omega_3 = M_3/M_3 \text{ max} = 2.69/11.0 = 0.25$

5. Calculation of Load Factor for Dynamic Moment

Equivalent load FE at impact

M1E: Moment

 M_{1E} max (from (4) of graph MY1H/ M_{1} where 1.4 Ω a = 420 mm/s) = 7.9 (N·m)....


$$\mathbf{M}_{1E} = \frac{1}{3} \times \mathbf{F}_{E} \times \mathbf{Z} = \frac{1}{3} \times 120.2 \times 34.8 \times 10^{-3} = 1.40 \text{ (N·m)}$$

Load factor $OL_4 = M_{1E}/M_{1E} max = 1.40/7.9 = 0.18$

Mзє: Moment

$$\mathbf{M}_{3E} = \frac{1}{3} \mathbf{x} \mathbf{F}_{E} \mathbf{x} \mathbf{Y} = \frac{1}{3} \mathbf{x} 120.2 \mathbf{x} 21.6 \mathbf{x} 10^{-3} = 0.87 (N \cdot m)$$

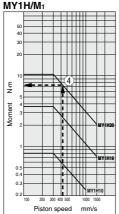
Load factor $\Omega_5 = M_{3E}/M_{3E} max = 0.87/7.9 = 0.12$

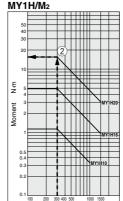
6. Sum and Examination of Guide Load Factors

$$\sum_{CL} = CL_1 + CL_2 + CL_3 + CL_4 + CL_5 = 0.79 \le 1$$

The above calculation is within the allowable value, and therefore the selected model can be used.

Select a shock absorber separately.


In an actual calculation, when the total sum of guide load factors $\Sigma \alpha$ in the formula above is more than 1, consider either decreasing the speed, increasing the bore size, or changing the product series.


This calculation can be easily made using the "SMC Pneumatics CAD System".

Load Mass

Allowable Moment

Piston speed

MY1B MY1H

MY1B

MY1M

MY1C

HT MY1 □W

MY2C MY2 H/HT

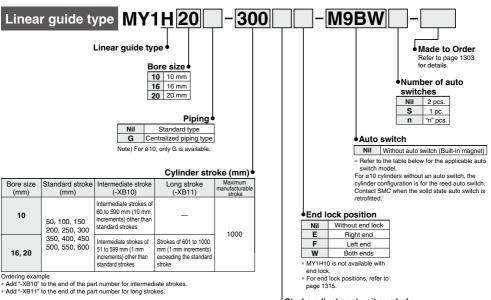
MY3A MY3B

MY3M

-X

D-□

1301


Mechanically Jointed Rodless Cylinder Linear Guide Type

MY1H Series

ø10. ø16. ø20

How to Order

For bore sizes ø25, ø32 and ø40, refer to page 1201.

Stroke adjustment unit symbol

Refer to "Stroke adjustment unit" on page 1303. Intermediate fixing spacer is not available for end lock mounting side.

Applicable Auto Switches/Refer to pages 1575 to 1701 for further information on auto switches.

		Fig. 1. Cont.	light	140	L	oad volta	ge	Auto swit	ch model	Lea	d wir	e ler	ngth ((m)				
Туре	Special function	Electrical entry	Indicator light	Wiring (Output)	D	С	AC	Perpendicular	In-line	0.5 (Nil)	1 (M)	3 (L)		None	Pre-wired connector	Applicat	ble load	
ç				3-wire (NPN)		5 V, 12 V	M9NV M9N	M9N	•	•	•	0	0	0	IC circuit			
switch				3-wire (PNP)		3 V, 12 V		M9PV	M9P	•	•	• 0 0 0 lc dicuit						
		2-wire		12 V]	M9BV	M9B	•	•	•	0	0	0					
anto	Diagramatic in diagram			3-wire (NPN)	P) 24 V 5 V, 12		E V 10 V		M9NWV	M9NW	•	•	•	0	0	0	IC circuit	Delevi
	Diagnostic indication (2-color indicator)	Grommet	Yes	3-wire (PNP)			24 V 5 V, 12 V	24 V 3 V, 12 V	-	M9PWV	M9PW	•	•	•	0	0	0	IO CIICUII
state	(2-color malcator)			2-wire		12 V	12 V 5 V. 12 V]	M9BWV	M9BW	•	•	•	0	0	0		1 LO
			1		3-wire (NPN)	.)			M9NAV*1	M9NA*1	0	0	•	0	_	0	IC circuit	
Solid	Water resistant (2-color indicator)			3-wire (PNP)		5 V, 12 V		M9PAV*1	M9PA*1	0	0	•	0	_	0	IC CIICUII		
	,,			2-wire		12 V		M9BAV*1	M9BA*1	0	0	•	0	_	0			
Reed auto switch		, Y	Yes	3-wire (NPN equivalent)	_	5 V	_	A96V	A96	•	_	•	-	_	1	IC circuit	_	
8 S		Grommet		2-wire	24 V	12 V	100 V	A93V*2	A93	•	•	•	•	_		_	Relay,	
ari			No	2-wire	24 V	12 V	100 V or less	A90V	A90	•	_	•	_	_	_	IC circuit	PLC	

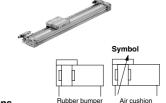
- *1 Water resistant type auto switches can be mounted on the above models, but in such case SMC cannot guarantee water resistance.
- Consult with SMC regarding water resistant types with the above model numbers.
- *2 1 m type lead wire is only applicable to D-A93.
- * Lead wire length symbols: 0.5 m Nil (Example) M9NW 1 m ······ M (Example) M9NWM
 - (Example) M9NWL
 - 3 m L (Example) M9NWL 5 m Z (Example) M9NWZ
- * Solid state auto switches marked with "O" are produced upon receipt of order.
- * There are other applicable auto switches than listed above. For details, refer to page 1333
- * For details about auto switches with pre-wired connector, refer to pages 1648 and 1649.

 * Auto switches are shipped together (not assembled). (Refer to pages 1331 to 1333 for the details of auto switch mounting.)

Mechanically Jointed Rodless Cylinder MY1H Series

Specifications

Bore size (mm)		10	16	20		
Fluid		А	ir			
Action		Double	acting			
Operating	pressure range	0.2 to 0.8 MPa	0.15 to	0.8 MPa		
Proof pre	ssure	1.2 MPa				
Ambient an	d fluid temperature	temperature 5 to 60°C				
Cushion		Rubber bumper Air cushion				
Lubrication	on	Non-	-lube			
Stroke lei	ngth tolerance	+1.8 0				
Piping	Front/Side port	M5 >				
port size	Bottom port		4			


Made to Order: Individual Specifications (For details, refer to page 1334.)

Symbol	Specifications
-X168	Helical insert thread specifications

Made to Order Specifications

Click here for details

Symbol	Specifications
-XB10	Intermediate stroke (Using exclusive body)
-XB11	Long stroke
-XB22	Shock absorber soft type RJ series type
-XC56	With knock pin hole
-XC67	NBR rubber lining in dust seal band

Lock Specifications

Bore size (mm)	16	20			
Lock position	One end (Selectable), Both ends				
Holding force (Max.) (N)	110	170			
Fine stroke adjustment range (mm)	0 to -5.6	0 to -6			
Backlash	1 mm or less				
Manual release	Possible (Non-lock type)				

Piston Speed

В	ore size (mm)	10	16, 20	
Without stroke a	djustment unit	100 to 500 mm/s	100 to 1000 mm/s	
Stroke	A unit		100 to 1000 mm/s ⁽¹⁾	
adjustment unit	L unit and H unit	100 to 1000 mm/s	100 to 1500 mm/s ⁽²⁾	

Note 1) Be aware that when the stroke adjustment range is increased by manipulating the adjustment bolt, the air cushion capacity decreases. Also, when exceeding the air cushion stroke ranges on page 1306, the piston speed should be 100 to 200 mm per second.

Note 2) The piston speed is 100 to 1000 mm/s for centralized piping.

Note 3) Use at a speed within the absorption capacity range. Refer to page 1306.

Stroke Adjustment Unit Specifications

Bore si	ze (mm)	10	1	6	20				
Unit symbol		Н	Α	L	Α	L	Н		
Configuration Shock absorber model		RB 0805 + with adjustment bolt	With adjustment bolt	RB 0806 + with adjustment bolt	With adjustment bolt	adjustment + with			
Stroke adjust- ment range by	Without spacer	0 to -10	0 to -5.6 0 to			0 to -6	0 to -6		
intermediate	With short spacer	— *1	-5.6 to	-11.2	−6 to −12				
fixing spacer (mm)	With long spacer	— *1	-11.2 t	o –16.8		−12 to −18			

- *1) For ø10, stroke adjustment is available. Refer to page 1317 for details.
- *2) Stroke adjustment range is applicable for one side when mounted on a cylinder.

Stroke Adjustment Unit Symbol

St	Stroke Adjustment Unit Symbol											
			Right side stroke adjustment unit									
		Without	A: With	adjustm	ent bolt	L: With low load shock absorber + Adjustment bolt			H: With high load shock absorber + Adjustment bolt			
		unit		With short spacer	With long spacer		With short spacer	With long spacer		With short spacer	With long spacer	
Ħ	Without unit		Nil	SA	SA6	SA7	SL	SL6	SL7	SH	SH6	SH7
ustment unit	A: With adjustment bolt		AS	Α	AA6	AA7	AL	AL6	AL7	AH	AH6	AH7
mer		With short spacer	A6S	A6A	A6	A6A7	A6L	A6L6	A6L7	A6H	A6H6	A6H7
ust		With long spacer	A7S	A7A	A7A6	A7	A7L	A7L6	A7L7	A7H	A7H6	A7H7
adj		oad shock absorber +	LS	LA	LA6	LA7	L	LL6	LL7	LH	LH6	LH7
ş	Adjustment bolt	With short spacer	L6S	L6A	L6A6	L6A7	L6L	L6	L6L7	L6H	L6H6	L6H7
stroke	DOIL	With long spacer	L7S	L7A	L7A6	L7A7	L7L	L7L6	L7	L7H	L7H6	L7H7
side	H: With high	load shock absorber +	HS	HA	HA6	HA7	HL	HL6	HL7	Н	HH6	HH7
fts	Adjustment	With short spacer	H6S	H6A	H6A6	H6A7	H6L	H6L6	H6L7	Н6Н	H6	Н6Н7
Left	bolt	With long spacer	H7S	H7A	H7A6	H7A7	H7L	H7L6	H7L7	H7H	H7H6	H7

* Intermediate fixing spacer is not available for end lock mounting side.

Shock Absorbers for L and H Units

T	Stroke adjustment	Bore size (mm)				
Туре	unit	10	16	20		
Standard	L	_	RBC	806		
(Shock absorber/RB series)	Н	RB0805	_	RB1007		
Shock absorber/soft type	L	-	RJ08	306H		
RJ series mounted (-XB22)	Н	RJ0805	_	RJ1007H		

- * The shock absorber service life is different from that of the MY1H cylinder depending on operating conditions. Refer to the RB Series Specific Product Precautions for the replacement period.
- Mounted shock absorber soft type RJ series (-XB22) is made to order specifications. For details, refer to page 1752.

Stroke adjustment unit mounting diagram

Stroke adjustment unit Intermediate fixing spacer

Place the protruding section on the stroke adjusting unit side

Example of L6L7 attachment Left side L unit Short spacer Lung spacer

Shock Absorber Specifications

one on the control of control one					
М	odel	RB 0805	RB 0806	RB 1007	
Max. energ	y absorption (J)	1.0	2.9	5.9	
Stroke abs	orption (mm)	5	6	7	
Max. collis	ion speed (mm/s)	1000	1500	1500	
Max. operating	frequency (cycle/min)	80	80	70	
Spring	Extended	1.96	1.96	4.22	
force (N)	Retracted	3.83	4.22	6.86	
Operating temperature range (°C) 5 to 60					

Port

* The shock absorber service life is different from that of the MY1H cylinder depending on operating conditions. Refer to the RB Series Specific Product Precautions for the replacement period.

MY1B MY1H

MY1B

MY1M

MY1C
MY1II
MY1
HT
MY1
MY2C

MY2

H/HT

MY3A MY3B

1303 A

Port

 $[\]ast$ Spacers are used to fix the stroke adjustment unit at an intermediate stroke position.

Theoretical Output

								(14)
Bore size	Piston area	Operating pressure (MPa)						
(mm)	(mm ²)	0.2	0.3	0.4	0.5	0.6	0.7	0.8
10	78	15	23	31	39	46	54	62
16	200	40	60	80	100	120	140	160
20	314	62	94	125	157	188	219	251

Note) Theoretical output (N) = Pressure (MPa) x Piston area (mm2)

Weight

							(kg
Bore size	Basic Basic per eac		Weight of movina	Side support bracket weight (per set)	Stroke adjustment unit weight (per unit)		
(mm)			parts	Type A and B	A unit weight	L unit weight	H unit weight
10	0.26	0.08	0.05	0.003	_	_	0.02
16	0.74	0.14	0.19	0.01	0.02	0.04	_
20	1.35	0.25	0.40	0.02	0.03	0.05	0.07

Calculation: (Example) MY1H20-300A

Option

Stroke Adjustment Unit Part No.

MYH-A 20 H2 - 6N
Stroke adjustment unit

Bore size •

1	10	10 mm
	16	16 mm
:	20	20 mm

Symbol	Stroke adjustment unit	Mounting position
A1	A unit	Left
A2	A unit	Right
L1	L unit	Left
L2	L unit	Right
H1	H unit	Left
H2	ri uriit	Right

Unit no.

Note 1) Refer to page 1303 for details about adjustment range.

Note 2) H unit only for ø10, A and L unit only for

ø16

Intermediate fixing spacer

Nil	Without spacer	
6□	Short spacer	
7 🗀	Long spacer	

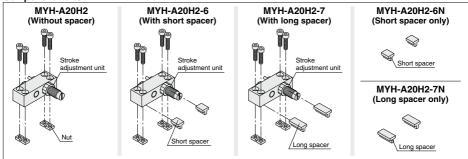
Spacer delivery type

Nil Unit installed

N Spacer only

* Spacers are used to fix the stroke adjustment unit at an intermediate stroke

position.


* Spacers are shipped for a set of two.

* Intermediate fixing spacer is not available for ø10. Place the protruding section on the stroke adjustment unit side.

Stroke adjustment unit Intermediate fixing spacer

* When ordering the intermediate fixing spacer for the stroke adjustment unit, the intermediate fixing spacer is shipped together.

Component Parts

^{*} Nuts are equipped on the cylinder body.

Side Support Part No.

Bore size (mm)		16	20
Side support A	MY-S10A	MY-S16A	MY-S20A
Side support B	MY-S10B	MY-S16B	MY-S20B

For details about dimensions, etc., refer to page 1316.

A set of side supports consists of a left support and a right support.

MY1B

MY1H MY1B

MY1M

MY1C

MY1H MY1 HT

MY1

MY2C MY2 H/HT

H/HT MY3A MY3B

MY3M

D-□

-X□

Technical Data

Cushion Capacity

Cushion Selection

<Rubber bumper>

Rubber bumpers are a standard feature on MY1H10.

Since the stroke absorption of rubber bumpers is short, when adjusting the stroke with an A unit, install an external shock absorber.

The load and speed range which can be absorbed by a rubber bumper is inside the rubber bumper limit line of the graph.

<Air cushion>

Air cushions are a standard feature on mechanically jointed rodless cylinders. air cushion mechanism

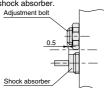
incorporated to prevent excessive impact of the piston at the stroke end during high speed operation. The purpose of air cushion, thus, is not to decelerate the piston near the stroke end.

The ranges of load and speed that air cushions can absorb are within the air cushion limit lines shown in the graphs.

<Stroke adjustment unit with shock absorber> Use this unit when operating with a load or speed exceeding the air cushion limit line, or when cushioning is required outside of the effective air cushion stroke range due to stroke adjustment.

L unit

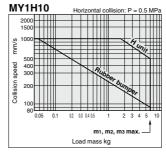
Use this unit when the cylinder stroke is outside of the effective air cushion range even if the load and speed are within the air cushion limit line, or when the cylinder is operated in a load and speed range above the air cushion limit line or below the L unit limit line.

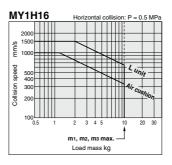

H unit

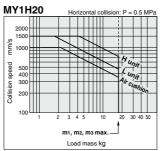
Use this unit when the cylinder is operated in a load and speed range above the L unit limit line and below the H unit limit line.

1. Refer to the figure below when using the adjustment bolt to perform stroke adjustment.

When the effective stroke of the shock absorber decreases as a result of stroke adjustment, the absorption capacity decreases dramatically. Secure the adjusting bolt at the position where it protrudes approximately 0.5 mm from the shock absorber.

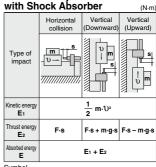



2. Do not use a shock absorber together with air cushion.


Air Cushion Stroke

	()
Bore size (mm)	Cushion stroke
16	12
20	15

Absorption Capacity of Rubber Bumper, Air cushion and Stroke Adjustment Units



Tightening Torque for Stroke Adjustment Unit Holding Bolts (N-m)

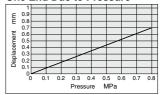
Bore size (mm)	Tightening torque	
10	Refer to the adjustment procedures on page 1317.	
16	0.7	
20	1.8	

Calculation of Absorbed Energy for Stroke Adjustment Unit

Symbol

υ: Speed of impact object (m/s)

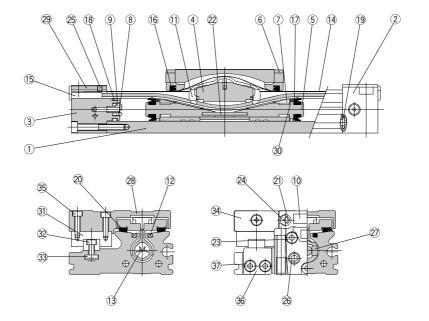
F: Cylinder thrust (N)


s: Shock absorber stroke (m)

m: Weight of impact object (kg)

g: Gravitational acceleration (9.8 m/s2)

Note) The speed of the impact object is measured at the time of impact with the shock absorber.


Rubber Bumper (ø10 only) Positive Stroke from One End Due to Pressure

Mechanically Jointed Rodless Cylinder MY1H Series Linear Guide Type

Construction: ø10

Centralized piping type

SMC

Component Parts

No.	Description	Material	Note
1	Cylinder tube	Aluminum alloy	Hard anodized
2	Head cover WR	Aluminum alloy	Painted
3	Head cover WL	Aluminum alloy	Painted
4	Piston yoke	Aluminum alloy	Hard anodized
5	Piston	Aluminum alloy	Chromated
6	End cover	Special resin	
7	Wear ring	Special resin	
8	Bumper	Polyurethane rubber	
9	Holder	Stainless steel	
10	Stopper	Carbon steel	Nickel plated
11	Belt separator	Special resin	
12	Seal magnet	Rubber magnet	
15	Belt clamp	Special resin	
20	Bearing	Special resin	
21	Spacer	Chromium molybdenum steel	Nickel plated

Replacement	Part:	Seal	Ki
-------------	-------	------	----

	• • • • • • • • • • • • • • • • • • • •							
No.	Description	Qty.	MY1H10					
13	Seal belt	1	MY10-16A-Stroke					
14	Dust seal band	1	MY10-16B-Stroke					
16	Scraper	2						
17	Piston seal	2	MY1B10-PS					
18	Tube gasket	2	MITIBIU-PS					
19	O-ring	4						

* Seal kit includes (6, (7), (8) and (9). Seal kit includes a grease pack (10 g).

When (3) and (4) are shipped independently, a grease

pack is included.

Order with the following part number when only the

grease pack is needed.

Grease pack part number: GR-S-010 (10 g), GR-S-020 (20 g)

No.	Description	Material	Note
22	Spring pin	Stainless steel	
23	Hexagon socket head cap screw	Chromium molybdenum steel	Chromated
24	Round binding head screw	Carbon steel	Chromated
25	Hexagon socket head set screw	Carbon steel	Black zinc chromated
26	Hexagon socket head plug	Carbon steel	Chromated
27	Magnet	_	
28	Slide table	Aluminum alloy	Hard anodized
29	Head plate	Stainless steel	
30	Lube-retainer	Special resin	
31	Linear guide	_	
32	Hexagon socket head cap screw	Chromium molybdenum steel	Chromated
33	Square nut	Carbon steel	Chromated
34	Stopper plate	Carbon steel	Chromated
35	Hexagon socket head cap screw	Chromium molybdenum steel	Chromated
36	Guide stopper	Carbon steel	Nickel plated

37 Hexagon socket head cap screw | Chromium molybdenum steel

MY1B MY1H

MY1B MY1M

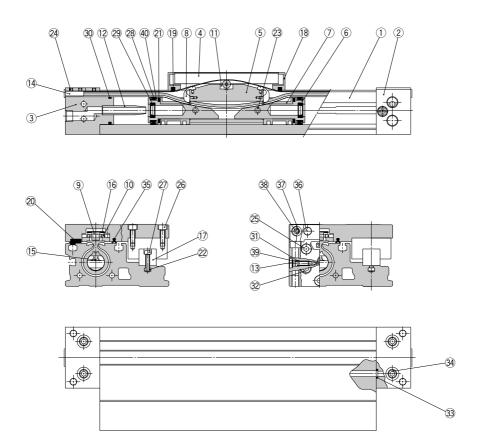
MY1C

MY1H

MY1 HT MY1 □W MY2C

MY2 H/HT MY3A

MY3B MY3M



Chromated

MY1H Series

Construction: ø16, ø20

MY1H16, 20

Mechanically Jointed Rodless Cylinder MY1H Series

MY1H16, 20

Component Parts

No.	Description	Material	Note
1	Cylinder tube	Aluminum alloy	Hard anodized
2	Head cover WR	Aluminum alloy	Painted
3	Head cover WL	Aluminum alloy	Painted
4	Slide table	Aluminum alloy	Hard anodized
5	Piston yoke	Aluminum alloy	Chromated
6	Piston	Aluminum alloy	Chromated
7	Wear ring	Special resin	
8	Belt separator	Special resin	
_ 9	Guide roller	Special resin	
10	Guide roller shaft	Stainless steel	
11	Coupler	Sintered iron material	
12	Cushion ring	Aluminum alloy	Anodized
13	Cushion needle	Rolled steel	Nickel plated
14	Belt clamp	Special resin	
17	Guide	-	
18	End cover	Special resin	
20	Bearing	Special resin	

No.	Description	Material	Note
21	Magnet	_	
22	Square nut	Carbon steel	Chromated
23	Spring pin	Carbon tool steel	
24	Hexagon socket head set screw	Chromium molybdenum steel	Black zinc chromated/Chromated
25	Hexagon socket head cap screw	Chromium molybdenum steel	Chromated
26	Hexagon socket head cap screw	Chromium molybdenum steel	Chromated
27	Hexagon socket head cap screw	Chromium molybdenum steel	Chromated
32	Hexagon socket head taper plug	Carbon steel	Chromated
34	Hexagon socket head taper plug	Carbon steel	Chromated
36	Stopper	Carbon steel	Nickel plated
37	Spacer	Stainless steel	
38	Hexagon socket button head screw	Chromium molybdenum steel	Chromated
39	Type CR retaining ring	Spring steel	
40	Lube-retainer	Special resin	

MY1B

MY1H MY1B

MY1M

MY1C

MY1H MY1 HT

MY1 □W

MY2C MY2 H/HT MY3A

MY3B MY3M

Replacement Part: Seal Kit

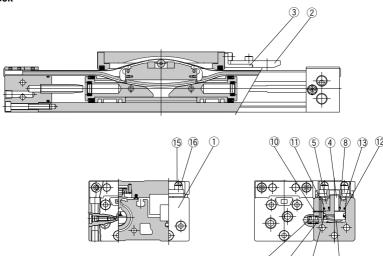
No.	Description	Qty.	MY1H16	MY1H20		
15	Seal belt	1	MY16-16C-Stroke	MY20-16C-Stroke		
16	Dust seal band	1	MY16-16B-Stroke	MY20-16B-Stroke		
31	O-ring	2	KA00309	KA00309		
31	O-ring	2	(ø4 x ø1.8 x ø1.1)	(ø4 x ø1.8 x ø1.1)		
35	Side scraper	1	MYH16-15BK2900B	MYH20-15BK2901B		
19	Scraper	2				
28	Piston seal	2				
29	Cushion seal	2	MY1H16-PS	MY1H20-PS		
30	Tube gasket	2				
33	O-ring	4				

* Seal kit includes (9, 28, 29, 30 and 33. Order the seal kit based on each bore size.

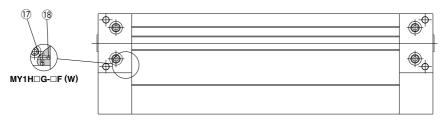
* Seal kit includes a grease pack (10 g).

Seal kit includes a grease pack (1 u g). When (§) and (§) are shipped independently, a grease pack (20 g) is included. Order with the following part number when only the grease pack is needed. Grease pack part number: GR-S-010 (10 g), GR-S-020 (20 g)

Note) Two kinds of dust seal bands are available. Verify the type to use, since the part number varies


depending on the treatment of the hexagon socket head set screw § . A: Black zinc chromated \rightarrow MY \square -16B-stroke, B: Chromated \rightarrow MY \square -16BW-stroke

MY1H Series


Construction: Ø16, Ø20

With End Lock

9

(6)

Component Parts

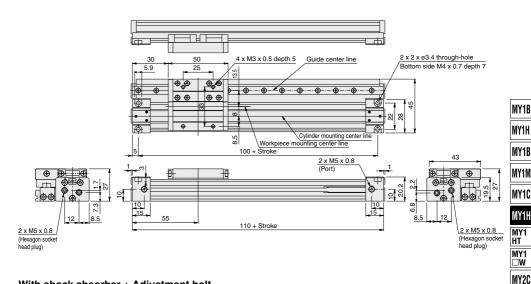
	•		
No.	Description	Material	Note
1	Locking body	Aluminum alloy	Painted
2	Lock finger	Carbon steel	After quenching, nickel plated
3	Lock finger bracket	Rolled steel	Nickel plated
4	Lock piston	Carbon tool steel	After quenching, electroless nickel plated
5	Rod cover	Aluminum alloy	Hard anodized
6	Return spring	Spring steel	Zinc chromated
7	Bypass pipe	Aluminum alloy	Chromated
10	Steel ball	High carbon chrome bearing steel	
11	Steel ball	High carbon chrome bearing steel	
13	Round type R retaining ring	Carbon tool steel	Nickel plated
14	O-ring	NBR	
15	Hexagon socket head cap screw	Chromium molybdenum steel	Nickel plated
16	Hexagon socket head cap screw	Chromium molybdenum steel	Nickel plated
17	Steel ball	High carbon chrome bearing steel	
18	Steel ball	High carbon chrome bearing steel	

Replacement Part: Seal Kit

No.	Description	Material	Qty.	MY1H16	MY1H20
8	Rod seal	NBR	1	KB00257	KB00257
9	Piston seal	NBR	1	KB00202	KB00202
12	O-ring	NBR	1	KA00057	KA00057

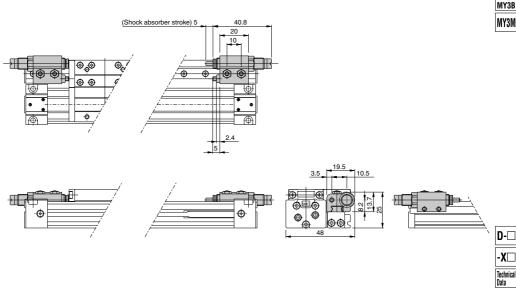
^{**} Since the seal kit does not include a grease pack, order it separately.

Grease pack part no.: GR-S-010 (10 g)

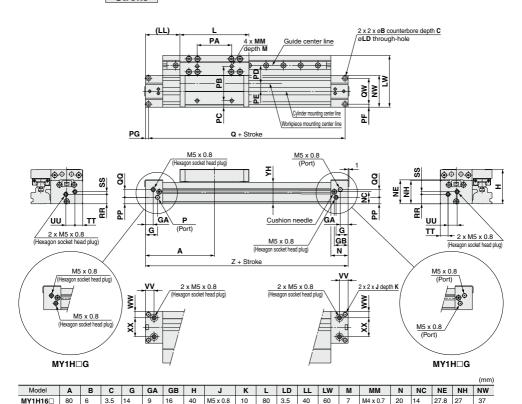


Mechanically Jointed Rodless Cylinder MY1H Series Linear Guide Type

Centralized Piping Type ø10


Refer to page 1337 regarding centralized piping port variations.

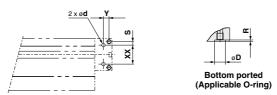
MY1H10G - Stroke


With shock absorber + Adjustment bolt

MY1H10G - Stroke H

MY2

H/HT MY3A MY1H16□/20□ - Stroke



																				(mm)
Model	PA	PB	PC	PD	PE	PF	PG	PP	Q	QQ	QW	RR	SS	TT	UU	VV	ww	XX	YH	Z
MY1H16□	40	40	7.5	21	9	3.5	3.5	7.5	153	9	30	11	3	9	10.5	10	7.5	22	25	160
MY1H20□	50	40	14.5	27	12	4.5	4.5	11.5	191	11	36	14.5	5	10.5	12	12.5	10.5	24	31.5	200

12

100

4.5 50 78 8

Hole Size for Centralized Piping on the Bottom

Model	WX	Υ	S	d	D	R	Applicable O-ring
MY1H16□	22	6.5	4	4	8.4	1.1	C6
MY1H20□	24	8	6	4	8.4	1.1	

(Machine the mounting side to the dimensions below.)

M5 x 0.8 25

34

33.5 45

17.5

MY1H20□

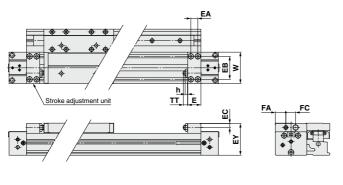
100 7.5

12.5

4.5

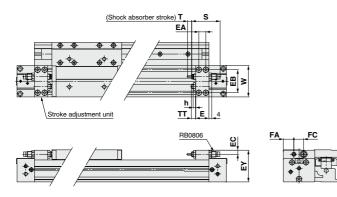
20.5

46 M6 x 1


12.5

Mechanically Jointed Rodless Cylinder MY1H Series

Stroke Adjustment Unit


With adjustment bolt

MY1H Bore size □ - Stroke A

Applicable bore size	E	EA	EB	EC	EY	FA	FC	h	TT	W
MY1H16	14.6	7	28	5.8	39.5	11.5	13	3.6	5.4 (Max. 11)	37
MY1H20	19	10	33	5.8	45.5	15	14	3.6	6 (Max. 12)	45

With low load shock absorber + Adjustment bolt MY1H Bore size - Stroke L

														(mm)
Applicable bore size	Е	EA	EB	EC	EY	F	FA	FC	h	S	Т	TT	W	Shock absorber model
MY1H16	14.6	7	28	5.8	39.5	4	11.5	13	3.6	40.8	6	5.4 (Max. 11)	37	RB0806
MY1H20	19	10	33	5.8	45.5	4	15	14	3.6	40.8	6	6 (Max. 12)	45	RB0806

D-□

-X 🗆 Technical Data

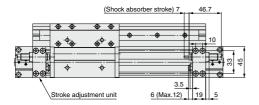
SMC

MY1B MY1H

MY1B MY1M

MY1C

MY1 HT MY1

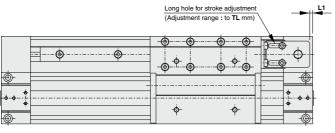

MY2C MY2 H/HT

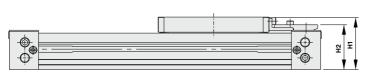
MY3A MY3B

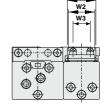
MY1H Series

Stroke Adjustment Unit

With high load shock absorber + Adjustment bolt MY1H20□ − Stroke H

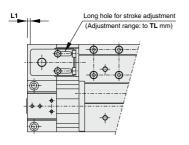



Mechanically Jointed Rodless Cylinder MY1H Series

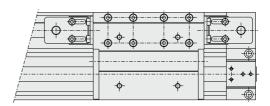

With End Lock Ø16, Ø20

Dimensions for types other than end lock are identical to the standard type dimensions. For details about dimensions, etc., refer to page 1312.

MY1B MY1H MY1B MY1M


MY1C

MY1H MY1 HT MY1 W MY2C


MY2 H/HT MY3A MY3B

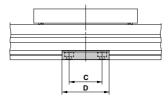
MY3M

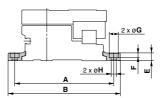
MY1H□-□F (Left end)

MY1H□-□W
(Both ends)

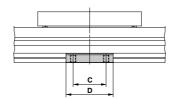
							(mm)
Model	H1	H2	L1	TL	W1	W2	W3
MY1H16□	39.2	33	0.5	5.6	18	16	10.4
MY1H20□	45.7	39.5	3	6	18	16	10.4
		•		•		•	

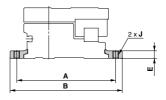
D
-X


Technical Data



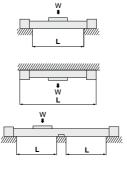
MY1H Series

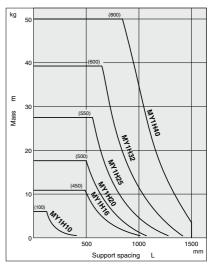

Side Support


Side support A MY-S□A

Side support B MY-S□B

										(mm)
Model	Applicable bore size	Α	В	С	D	E	F	G	Н	J
MY-S10A	MY1H10	53	61.6	12	21	3	1.2	6.5	3.4	M4 x 0.7
MY-S16A	MY1H16	71	81.6	15	26	4.9	3	6.5	3.4	M4 x 0.7
MY-S20₽	MY1H20	91	103.6	25	38	6.4	4	8	4.5	M5 x 0.8
MY-S25A	MY1H25	105	119	35	50	8	5	9.5	5.5	M6 x 1
MY-S32A	MY1H32	130	148	45	64	11.7	6	11	6.6	M8 x 1.25
MY-S40₽	MY1H40	145	167	55	80	14.8	8.5	14	9	M10 x 1.5
							_			


^{*} A set of side supports consists of a left support and a right support.

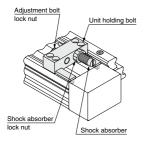

Guide for Side Support Application

For long stroke operation, the cylinder tube may be deflected depending on its own weight and the load mass. In such a case, use a side support in the middle section. The spacing (L) of the support must be no more than the values shown in the graph on the right.

⚠ Caution

- 1. If the cylinder mounting surfaces are not measured accurately, using a side support may cause poor operation. Therefore, be sure to level the cylinder tube when mounting. Also, for long stroke operation involving vibration and impact, use of a side support is recommended even if the spacing value is within the allowable limits shown in the graph.
- 2. Support brackets are not for mounting; use them solely for providing support.

MY1H Series Specific Product Precautions 1


Be sure to read this before handling the products.

Refer to back page 50 for Safety Instructions and pages 3 to 12 for Actuator and Auto Switch Precautions.

Use caution not to get your hands caught in the unit.

 When using a product with stroke adjustment unit, the space between the slide table (slider) and the stroke adjustment unit becomes narrow at the stroke end, causing a danger of hands getting caught. Install a protective cover to prevent direct contact with the human body.

<Fastening of unit>

The unit can be secured by evenly tightening the four unit holding bolts.

△ Caution

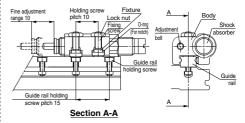
Do not operate with the stroke adjustment unit fixed in an intermediate position.

When the stroke adjustment unit is fixed in an intermediate position, slippage can occur depending on the amount of energy released at the time of an impact. In such cases, as a stroke adjustment unit with the spacer for intermediate securing is available, it is recommended to use it.

(Except ø10)

For other lengths, please consult with SMC (Refer to "Tightening Torque for Stroke Adjustment Unit Holding Bolts".)

<Stroke adjustment with adjustment bolt>


Loosen the adjustment bolt lock nut, and adjust the stroke from the head cover side using a hexagon wrench. Re-tighten the lock nut.

<Stroke adjustment with shock absorber>

Loosen the shock absorber lock nut, and adjust the stroke by turning the shock absorber. Then, re-tighten the lock nut.

⚠ Caution

To adjust the stroke adjustment unit of the MY1H10, follow the step shown below.

Adjusting Procedure

- 1. Loosen the two lock nuts, and then loosen the holding screws by turning them approximately two turns.
- Move the body to the notch just before the desired stroke. (The notches are found in alternating increments of 5 mm and 10 mm.)
- 3. Tighten the holding screw to 0.3 N·m. Make sure that the tightening does not cause excessive torque.
 The fixture fits into the fastening hole in the guide rail to prevent slippage, which enables fastening with low torque.
- 4. Tighten the lock nut to 0.6 N·m.
- Make fine adjustments with the adjustment bolt and shock absorber.

MY1B MY1H

> MY1B MY1M

MY1C

MY1H MY1

HT MY1 □W

MY2C

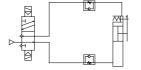
MY3A MY3B

D-□ -X□

Technical Data

MY1H Series Specific Product Precautions 2

Be sure to read this before handling the products.


Refer to back page 50 for Safety Instructions and pages 3 to 12 for Actuator and Auto Switch Precautions.

With End Locks

Recommended Pneumatic Circuit

⚠ Caution

This is necessary for the correct locking and unlocking actions.

Operating Precautions

1. Do not use 3 position solenoid valves.

Avoid use in combination with 3 position solenoid valves (especially closed center metal seal types). If pressure is trapped in the port on the lock mechanism side, the cylinder cannot be locked.

Furthermore, even after being locked, the lock may be released after some time due to air leaking from the solenoid valve and entering the cylinder.

2. Back pressure is required when releasing the lock.

Before starting operation, be sure to control the system so that air is supplied to the side without the lock mechanism (in case of locks on both ends, the side where the slide table is not locked) as shown in the figure above. There is a possibility that the lock may not be released. (Refer to the section on releasing the lock.)

- Release the lock when mounting or adjusting the cylinder. If mounting or other work is performed when the cylinder is locked, the lock unit may be damaged.
- 4. Operate at 50% or less of the theoretical output.

If the load exceeds 50% of the theoretical output, this may cause problems such as failure of the lock to release, or damage to the lock unit.

5. Do not operate multiple cylinders in synchronization.

Avoid applications in which two or more end lock cylinders are synchronized to move one workpiece, as one of the cylinder locks may not be able to release when required.

- Use a speed controller with meter-out control. Lock cannot be released occasionally by meter-in control.
- 7. Be sure to operate completely to the cylinder stroke end on the side with the lock.

If the cylinder piston does not reach the end of the stroke, locking and unlocking may not be possible. (Refer to the section on adjusting the end lock mechanism.)

Operating Pressure

⚠ Caution

 Supply air pressure of 0.15 MPa or higher to the port on the side that has the lock mechanism, as it is necessary for disengaging the lock.

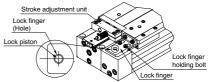
Exhaust Speed

⚠ Caution

1. Locking will occur automatically if the pressure applied to the port on the lock mechanism side falls to 0.05 MPa or less. In the cases where the piping on the lock mechanism side is long and thin, or the speed controller is separated at some distance from the cylinder port, the exhaust speed will be reduced. Take note that some time may be required for the lock to engage. In addition, clogging of a silencer mounted on the solenoid

valve exhaust port can produce the same effect.

Relation to Cushion


⚠ Caution

 When the air cushion on the lock mechanism side is in a fully closed or nearly closed state, there is a possibility that the slide table will not reach the stroke end, in which case locking will not occur.

Adjusting the End Lock Mechanism

⚠ Caution

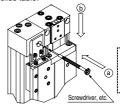
- The end lock mechanism is adjusted at the time of shipping.
 Therefore, adjustment for operation at the stroke end is unnecessary.
- Adjust the end lock mechanism after the stroke adjustment unit has been adjusted. The adjustment bolt and shock absorber of the stroke adjustment unit must be adjusted and secured first. Locking and unlocking may not occur otherwise.
- 3. Perform fine adjustment of the end lock mechanism as follows. Loosen the lock finger holding bolts, and then adjust by aligning the center of the lock piston with the center of the lock finger hole. Secure the lock finger.

Releasing the Lock

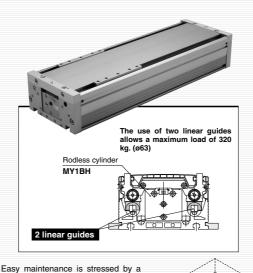
\land Warning

1. Before releasing the lock, be sure to supply air to the side without the lock mechanism, so that there is no load applied to the lock mechanism when it is released. (Refer to the recommended pneumatic circuits.) If the lock is released when the port on the side without the lock is in an exhaust state, and with a load applied to the lock unit, the lock unit may be subjected to an excessive force and be damaged.

Furthermore, sudden movement of the slide table is very dangerous.


Manual Release

When manually releasing the end lock, be sure to release the pressure.


If it is unlocked while the air pressure still remains, it will lead to damage a workpiece, etc. due to unexpected lurching.

Perform manual release of the end lock mechanism as follows. Push the lock piston down with a screwdriver, etc., and move the slide table.

Other handling precautions regarding mounting, piping, and environment are the same as the standard series.

revolutionary construction which allows cylinder replacement without disturbing the guide units or

workpiece.

MY1B MY1H

MY1B

MY1M

MY1C

MY1H

MY1

□W MY2C

MY2 H/HT MY3A MY3B

MY3M

MY1HT Series Prior to Use

Maximum Allowable Moment/Maximum Load Mass

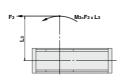
Madel	Bore size	Maximum a	ıllowable mo	ment (N·m)	Maximum load mass (kg)			
Model	(mm)	M ₁	M2	Мз	m1	m2	тз	
MY1HT	50	140	180	140	200	140	200	
	63	240	300	240	320	220	320	

The above values are the maximum allowable values for moment and load. Refer to each graph regarding the maximum allowable moment and maximum allowable load for a particular piston speed.

Maximum Allowable Moment

Select the moment from within the range of operating limits shown in the graphs. Note that the maximum allowable load value may sometimes be exceeded even within the operating limits shown in the graphs. Therefore, also check the allowable load for the selected conditions.

Load mass (kg)



Moment (N·m)

<Calculation of guide load factor>

- 1. Maximum allowable load (1), static moment (2), and dynamic moment (3) (at the time of impact with stopper) must be examined for the selection calculations.
 - * To evaluate, use value (average speed) for (1) and (2), and value (collision speed value = 1.4va) for (3), Calculate mmax for (1) from the maximum allowable load graph (m1, m2, m3) and Mmax for (2) and (3) from the maximum allowable moment graph (M₁, M₂, M₃).

Sum of guide $\Sigma \alpha$	Load mass [m]	Static moment [M] (1)	Dynamic moment [M _E] ⁽²⁾ ✓ 1
load factors	Maximum allowable load [m max]	Allowable static moment [Mmax]	Allowable dynamic moment [Memax]

Note 1) Moment caused by the load, etc., with cylinder in resting condition.

Note 2) Moment caused by the impact load equivalent at the stroke end (at the time of impact with stopper). Note 3) Depending on the shape of the workpiece, multiple moments may occur. When this happens, the sum of the load factors ($\Sigma \alpha$) is the total of all such moments.

2. Reference formula [Dynamic moment at impact]

Use the following formulae to calculate dynamic moment when taking stopper impact into consideration

m: Load mass (kg)

F: Load (N)

FE: Load equivalent to impact (at impact with stopper) (N)

1)a: Average speed (mm/s)

M: Static moment (N-m)

$$v = 1.4va \text{ (mm/s)} F_E = 1.4va \cdot \delta \cdot m \cdot g$$

$$\therefore \mathbf{M}_{E} = \frac{1}{3} \cdot F_{E} \cdot L_{1} = 4.57 \cdot \mathbf{0} \cdot \mathbf{0} \cdot \mathbf{0} \cdot \mathbf{0}$$

υ: Collision speed (mm/s)

L1: Distance to the load's center of gravity (m)

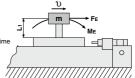
ME: Dynamic moment (N-m)

δ: Damper coefficient

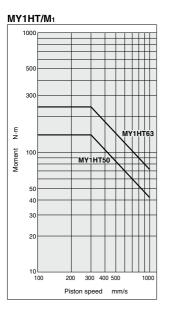
With rubber bumper = 4/100

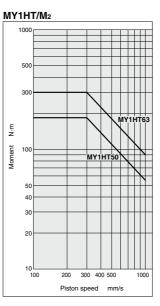
(MY1B10, MY1H10)

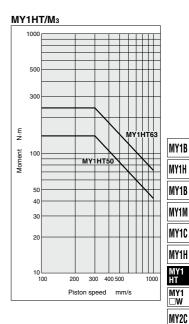
With air cushion = 1/100

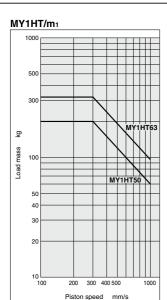

With shock absorber = 1/100 g: Gravitational acceleration (9.8 m/s2)

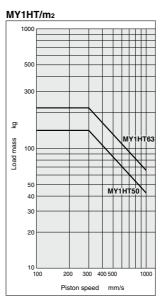
Note 4) 1.4 vab is a dimensionless coefficient for calculating impact force. Note 5) Average load coefficient $(=\frac{1}{3})$: This coefficient is for averaging the maximum load moment at the time of stopper impact according to service life calculations.

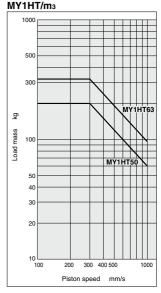

3. For detailed selection procedures, refer to pages 1322 and 1323.


Maximum Load Mass


Select the load from within the range of limits shown in the graphs. Note that the maximum allowable moment value may sometimes be exceeded even within the operating limits shown in the graphs. Therefore, also check the allowable moment for the selected conditions.




Prior to Use MY1HT Series



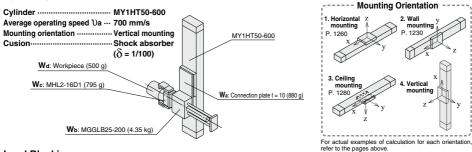
Technical Data

D-□

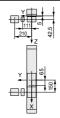
-X□

MY2 H/HT

MY3A MY3B


MY3M

MY1HT Series Model Selection


Following are the steps for selecting the most suitable MY1HT series to your application.

Calculation of Guide Load Factor

1. Operating Conditions

2. Load Blocking

Mass and Center of Gravity for Each Workpiece

Workpiece no.	Mass	Center of gravity						
Wn	m _n	X-axis Xn	Y-axis Yn	Z-axis Zn				
Wa	0.88 kg	65 mm	0 mm	5 mm				
Wb	4.35 kg	150 mm	0 mm	42.5 mm				
Wc	0.795 kg	150 mm	111 mm	42.5 mm				
Wd	0.5 kg	150 mm	210 mm	42.5 mm				

n=a, b, c, d

3. Composite Center of Gravity Calculation -

$$m_4 = \sum m_n$$

= 0.88 + 4.35 + 0.795 + 0.5 = **6.525 kg**

$$\mathbf{X} = \frac{1}{\mathbf{m}_4} \mathbf{x} \sum (\mathbf{m}_n \times \mathbf{x}_n)$$

$$= \frac{1}{6.525} (0.88 \times 65 + 4.35 \times 150 + 0.795 \times 150 + 0.5 \times 150) = \mathbf{138.5} \text{ mm}$$

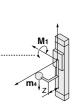
$$\mathbf{Y} = \frac{1}{1} \mathbf{x} \sum (\mathbf{m}_n \times \mathbf{y}_n)$$

$$Y = \frac{1}{m_4} \times \sum (m_n \times y_n)$$

$$= \frac{1}{6.525} (0.88 \times 0 + 4.35 \times 0 + 0.795 \times 111 + 0.5 \times 210) = 29.6 \text{ mm}$$

4. Calculation of Load Factor for Static Load

m₄: Mass


 m_4 is the mass which can be transferred by the thrust, and as a rule, is actually about 0.3 to 0.7 of the thrust. (This differs depending on the operating speed.)

M₁ max (from (1) of graph MY1HT/M₁) = 60 (N·m)

$$M_1 = m_4 \times g \times Z = 6.525 \times 9.8 \times 37.4 \times 10^{-3} = 2.39 \text{ (N·m)}$$

Load factor $\Omega_1 = M_2/M_2 \text{ max} = 2.39/60 = 0.04$

Model Selection MY1HT Series

M₃: Moment

$$M_3 = m_4 \times q \times Y = 6.525 \times 9.8 \times 29.6 \times 10^{-3} = 1.89 (N \cdot m)$$

Load factor $OL_2 = M_3/M_3$ max = 1.89/60 = 0.03

5. Calculation of Load Factor for Dynamic Moment

Equivalent load FE at impact

$$\mathbf{F}_{E} = 1.4 \text{ } 0 \text{ } a \times \delta \times m \times g = 1.4 \times 700 \times \frac{1}{100} \times 6.525 \times 9.8 = 626.7 \text{ (N)}$$

M1E: Moment

$$M_{1E}$$
 max (from (3) of graph MY1HT/ M_1 where 1.4 $Va = 980$ mm/s) = 42.9 (N·m) ······

$$\mathbf{M}_{1E} = \frac{1}{3} \times \mathbf{F}_{E} \times \mathbf{Z} = \frac{1}{3} \times 626.7 \times 37.4 \times 10^{-3} = 7.82 \text{ (N·m)}$$

Load factor Ol3 = M1E/M1E max = 7.82/42.9 = 0.18

M3E: Moment

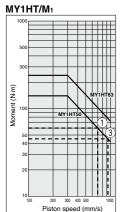
$$\mathbf{M}_{3E} = \frac{1}{3} \times \mathbf{F}_{E} \times \mathbf{Y} = \frac{1}{3} \times 626.7 \times 29.6 \times 10^{-3} = 6.19 \text{ (N·m)}$$

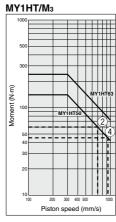
Load factor $OC_4 = M_{3E}/M_{3E} max = 6.19/42.9 = 0.14$

6. Sum and Examination of Guide Load Factors

 $\sum \alpha = \alpha_1 + \alpha_2 + \alpha_3 + \alpha_4 = 0.39 \le 1$

The above calculation is within the allowable value, and therefore the selected model can be used.


Select a shock absorber separately.


In an actual calculation, when the total sum of guide load factors $\Sigma \alpha$ in the formula above is more than 1, consider either decreasing the speed, increasing the bore size, or changing the product series.

ØSMC

This calculation can be easily made using the "SMC Pneumatics CAD System".

Allowable Moment

MY1B MY1H

MY1B

MY1M MY1C

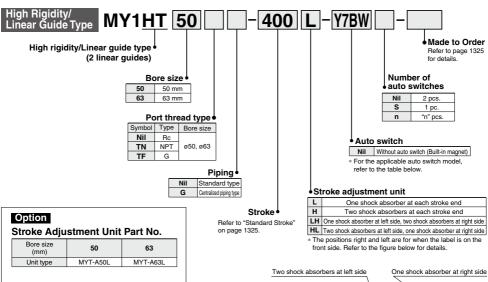
MY1H

HT MY1 □W

MY2C

MY3A MY3B

MY3M


Techni Data

Mechanically Jointed Rodless Cylinder High Rigidity/Linear Guide Type

MY1HT Series

ø50, ø63

How to Order

Side Support Part No.							
Bore size (mm) 50 63							
Side support A	MY-S	S63A					
Side support B MY-S63B							

For details about dimensions, etc., refer to page 1330. A set of side supports consists of a left support and a right support.

Applicable Auto Switches/Refer to pages 1575 to 1701 for further information on auto switches.																	
		Electrical	ō	ME	L	oad volta	ge	Auto swite	ch model	Lead wire I	ength	(m)	Pre-wired				
Type	Special function	entry	dicato	Wiring (Output)	Г	C	AC	AC Perpendicular		0.5	3	5	connector	Applical	ble load		
			Ĕ	(Output)			Α0	i erperiulcular	In-line	(Nil)	(L)	(Z)					
ch				3-wire (NPN)		5 V 40 V	Y69A	Y59A	•	•	0	0	IC circuit				
switch	_	Grommet \		3-wire (PNP)		5 V, 12 V		Y7PV	Y7P	•	•	0	0	IC circuit			
auto				2-wire	12 V	12 V	Y69B	Y59B	•	•	0	0		l			
			Yes	3-wire (NPN)	24 V	E V 10 V	5 V, 12 V -	_	Y7NWV	Y7NW	•	•	0	0	IC circuit	Relay, PLC	
Solid state	Diagnostic indication (2-color indicator)			3-wire (PNP)	5 V, 12 V		Y7PWV	Y7PW	•	•	0	0	IC circuit	. 20			
ğ	(2-color indicator)					12 V] [Y7BWV	Y7BW	•	•	0	0				
တိ	Water resistant (2-color indicator)			2-wire		12 V		_	Y7BA**	_	•	0	0	_			
Reed auto switch		Grommet	Yes	3-wire (NPN equivalent)	_	5 V	_	_	Z 76	•	•	-	_	IC circuit	_		
Be to s	_		No	2-wire 24 V	12 V	100 V	_	Z73	•	•	•	_	- Relay.	Relay,			
an				No	No	No	No	2 1/110	24 V	12 V	100 V or less		Z80	•	•		_

- ** Water resistant type auto switches can be mounted on the above models, but in such case SMC cannot guarantee water resistance.
- Consult with SMC regarding water resistant types with the above model numbers. * Lead wire length symbols: 0.5 m ····· Nil (Example) Y7BW
 - 3 m ····· L (Example) Y7BWL

 - 5 m ····· Z Example) Y7BWZ

* Solid state auto switches marked with "O" are produced upon receipt of

Note) With top cover removed

Label position

- * Separate switch spacers (BMP1-032) are required for retrofitting of auto switches.
- * There are other applicable auto switches than listed above. For details, refer to page 1333 * For details about auto switches with pre-wired connector, refer to pages 1648 and 1649.
- * Auto switches are shipped together (not assembled). (For details about auto switch mounting, etc., refer to pages 1331 to 1333.)

Mechanically Jointed Rodless Cylinder MY1HT Series High Rigidity/Linear Guide Type

Specifications

Bore size (mm)		50	63			
Fluid		Air				
Action		Double	acting			
Operating pres	sure range	0.1 to 0	.8 MPa			
Proof pressure	1	1.2 MPa				
Ambient and flui	d temperature	5 to 60°C				
Piston speed		100 to 1000 mm/s				
Cushion		Shock absorbers on both ends (Standard)				
Lubrication		Non-lube				
Stroke length to	olerance	2700 or less $^{+1.8}_{0}$, 2701 to 5000 $^{+2.8}_{0}$				
Port size	Side port	Rc 3/8				

Note) Use at a speed within the absorption capacity range. Refer to page 1326.

Stroke Adjustment Unit Specifications

Applicable bore size (mm)	5	0	63			
Unit symbol, contents	L	Н	L	Н		
	RB2015 and adjustment bolt: 1 set each	RB2015 and adjustment bolt: 2 sets each	RB2725 and adjustment bolt: 1 set each	RB2725 and adjustment bolt: 2 sets each		
Fine stroke adjustment range (mm)	0 to	-20	0 to -25			
Stroke adjustment range	For adjustment method, refer to page 1327.					

^{*} Stroke adjustment range is applicable for one side when mounted on a cylinder.

Shock absorber model		RB2015 x 1 pc.	RB2015 x 2 pcs.	RB2725 x 1 pc.	RB2725 x 2 pcs.	
Maximum energy absorption (J)		58.8	88.2 Note)	147	220.5 Note)	
Stroke absorption (mm)		15	15	25	25	
Maximum collision speed (mm/s)		10	00	1000		
Maximum operating	frequency (cycle/min)	25	25	10	10	
Contractores (N)	Extended	8.34	16.68	8.83	17.66	
Spring force (N)	Retracted	20.50	0.50 41.00 20.01		40.02	
Operating temperature range (°C)			5 to	60		

Note) Maximum energy absorption for 2 pcs. is calculated by multiplying the value for 1 pc. by 1.5.

Theoretical Output

								(N)
Bore size	Piston area		Opera	ating	pres	sure	(MPa	ι)
(mm)	(mm²)	0.2	0.3	0.4	0.5	0.6	0.7	0.8
50	1962	392	588	784	981	1177	1373	1569
63	3115	623	934	1246	1557	1869	2180	2492

Note) Theoretical output (N) = Pressure (MPa) x Piston area (mm²)

Symbol	Specifications					
-XB10	B10 Intermediate stroke (Using exclusive body)					
-XC67	NBR rubber lining in dust seal band					

Standard Stroke

Bore size (mm)	Standard stroke (mm)	Intermediate stroke (-XB10)	Long stroke (-XB11)	Maximum manufacturable stroke
50, 63	200, 400, 600 800, 1000 1500, 2000	Intermediate strokes of 201 to 1999 mm (1 mm increments) other than standard strokes	_	5000

Note) Cylinders other than the standard stroke type are manufactured upon request for special order.

Ordering example

* Add "-XB10" to the end of the part number for intermediate strokes.

Weight

							(ko
Bore size	Basic	Additional weight per	Weight	Side support weight (per set)	Stroke a	djustment un	it weight
(mm)	weight	ght each 25 mm of stroke	of moving parts	Type A and B	L unit weight	LH unit weight	H unit weight
50	30.62	0.87	5.80	0.17	0.62	0.93	1.24
63	41.69	1.13	8.10	0.17	1.08	1.62	2.16

Calculation: (Example) MY1HT50-400L

Basic weight -----30.62 kg
 Additional contents 0.07/05 at

Additional weight ----0.87/25 st
 L unit weight -----0.62 kg

• Cylinder stroke······· 400 st 30.62 + 0.87 x 400 ÷ 25 + 0.62 x 2 ≅ 45.8

SMC

D
-X

Technical

MY1B MY1H

MY1B MY1M MY1C MY1H

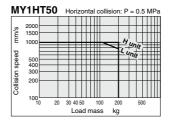
MY10 MY20 MY20 MY20 H/HT MY3A MY3M

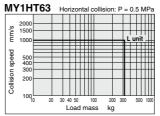
^{*} The shock absorber service life is different from that of the MY1HT cylinder depending on operating conditions. Refer to the RB Series Specific Product Precautions for the replacement period.

Cushion Capacity

Cushion Selection

<Stroke adjustment unit with built-in shock absorber>

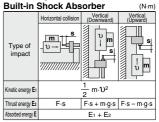

L unit


Use this unit when the cylinder stroke is outside of the effective air cushion range even if the load and speed are within the air cushion limit line, or when the cylinder is operated in a load and speed range above the air cushion limit line or below the L unit limit line.

H unit

Use this unit when the cylinder is operated in a load and speed range above the L unit limit line and below the H unit limit line.

Stroke Adjustment Unit Absorption Capacity



Stopper Bolt Holding Screw Tightening Torque Stopper Bolt

Tightening Torque for Stroke Adjustment
Unit Lock Plate Holding Bolts (N.m.)

Bore size (mm)	Tightening torque
50	0.6
62	1.5

Calculation of Absorbed Energy for Stroke Adjustment Unit with

Symbol

- v: Speed of impact object (m/s)
- F: Cylinder thrust (N)
- s: Shock absorber stroke (m)
- m: Mass of impact object (kg)
- g: Gravitational acceleration (9.8 m/s²)

Note) The speed of the impact object is measured at the time of impact with the shock absorber.

⚠ Precautions

Be sure to read this before handling the products. Refer to back page 50 for Safety Instructions and pages 3 to 12 for Actuator and Auto Switch Precautions.

Mounting

 Do not put hands or fingers inside when the body is suspended.

Since the body is heavy, use eye bolts when suspending it. (The eye bolts are not included with the body.)

Stroke Adjustment Method

- 1. As shown in Figure (1), to adjust the stopper bolt within the adjustment range A, insert a hexagon wrench from the top to loosen the hexagon socket head set screw by approximately one turn, and then adjust the stopper bolt with a flat head screwdriver.
- 2. When the adjustment described in 1 above is insufficient, the shock absorber can be adjusted. Remove the covers as shown in Figure (2) and make further adjustment by loosening the hexagon nut.

3. Various dimensions are indicated in Table (1). Never make an adjustment that exceeds the dimensions in the table, as it may cause an accident and/or damage.

(mm

63

6 to 31

14 to 74

102

85

50

6 to 26

14 to 54

87

60

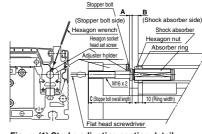


Figure (1) Stroke adjusting section detail Hexagon socket head cap s BMax. Side cover Hexagon socket head cap screw Figure (2) Cover installation and removal

Figure (3) Maximum stroke adjustment detail

Disassembly and Assembly Procedure

Disassembly step

Table (1)

Bore size (mm)

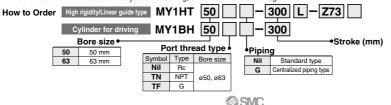
A to A Max.

B to B Max

С

Max. adjustment range

- 1. Remove the hexagon socket head cap screws 1, and remove the upper plates.
- 2. Remove the top cover.
- 3. Remove the hexagon socket head cap screws 2, and remove the end covers and couplers.
- 4. Remove the hexagon socket head cap screws 3.
- 5. Remove the hexagon socket head cap screws 4, and remove the end supports.
- 6. Remove the cylinder.


Hexagon socket head cap screw 1 (Tightening torque 25 N·m) Holding block Upper plate Hexagon socket head cap screw 4 (ø50: Tightening torque 5 N-m Couple e63: Tightening torque 11 N-m End cove Hexagon socket head cap screw 2 (Tightening torque 25 N·n for driving End suppor Hexagon socket head cap screw 3 End plate (Tightening torque 3 N-m)

Assembly step

- 1. Insert the MY1BH cylinder.
- 2. Temporarily fasten the end supports with the hexagon socket head cap screws 4.
- 3. With two hexagon socket head cap screws 3 on the L or R side, pull the end support and the cylinder.
- 4. Tighten the hexagon socket head cap screws 3 on the other side to eliminate the looseness in the axial direction. (At this point, a space is created between the end support and the end plate on one side, but this is not a problem.)
- 5. Re-tighten the hexagon socket head cap screws 4.
- 6. Fasten the end cover with the hexagon head cap screws 2, while making sure that the coupler is in the right direction.
- 7. Place the top cover on the body.
- 8. Insert the holding blocks into the top cover and fasten the upper plates with the hexagon socket head cap screws 1.

Cylinder For Driving (MY1BH Series)

Since the MY1BH series is a cylinder for driving for the MY1HT series, its construction is different from the MY1B series. Do not use the MY1B series as a cylinder for driving, since it will lead to damage

D-□ -X□ Technical

MY1B

MY1H

MY1B

MY1M

MY1C

MY1H

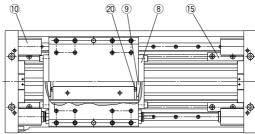
MY1

 $\square W$

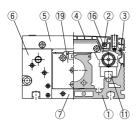
MY2C

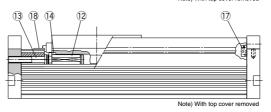
MY2

H/HT


MY3A

MY3B

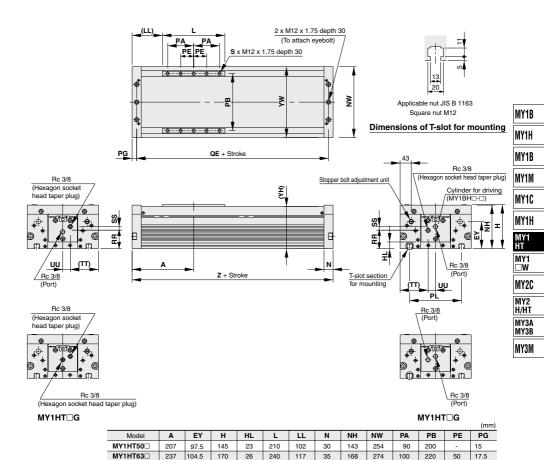

MY3M


Construction

Standard type

Note) With top cover removed

Component Parts


No.	Description	Material	Note			
1	Guide frame	Aluminum alloy	Hard anodized			
2	Slide table	Aluminum alloy	Hard anodized			
3	Side cover	Aluminum alloy	Hard anodized			
4	Top cover	Aluminum alloy	Hard anodized			
5	Upper plate	Aluminum alloy	Hard anodized			
6	End plate	Aluminum alloy	Hard anodized			
7	Bottom plate	Aluminum alloy	Hard anodized			
8	End cover	Aluminum alloy	Chromated			
9	Coupler	Aluminum alloy	Chromated			
10	Adjuster holder	Aluminum alloy	Hard anodized			
11	Guide	_				
12	Shock absorber	_				
13	Stopper bolt	Carbon steel	Nickel plated			
14	Absorber ring	Rolled steel	Nickel plated			
15	End support	Aluminum alloy	Hard anodized			
16	Top block	Aluminum alloy	Chromated			
17	Side block	Aluminum alloy	Chromated			
18	Slide plate	Special resin				
19	Rodless cylinder	_	MY1BH			
20	Stopper	Carbon steel Nickel plate				

Mechanically Jointed Rodless Cylinder High Rigidity/Linear Guide Type MY1HT Series

Standard Type/Centralized Piping Type Ø50, Ø63

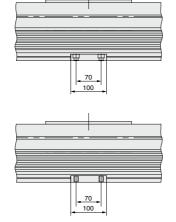
Refer to page 1337 regarding centralized piping port variations.

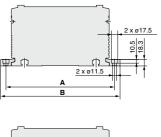
MY1HT50□/63□ - Stroke

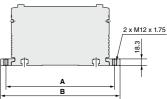
										(mm)
Model	PL	QE	RR	S	SS	TT	UU	YH	YW	Z
MY1HT50□	180	384	57	6	10	103.5	23.5	136.4	253	414
MY1HT63□	200	439	71.5	10	13.5	108	29	162.6	273	474

D
-X

Technical
Data



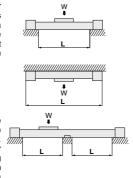

MY1HT Series

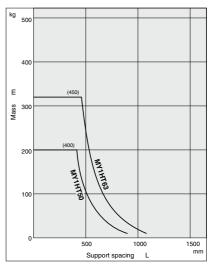

Side Support

Side support A MY-S63A

Side support B MY-S63B

Dimensions			(mm)
Model	Applicable bore size	Α	В
MY-S63A	MY1HT50	284	314
IVI 1-203B	MV1UTC2	204	224

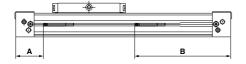

^{*} A set of side supports consists of a left support and a right support.


Guide for Side Support Application

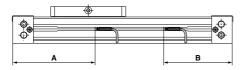
For long stroke operation, the cylinder tube may be deflected depending on its own weight and the load mass. In such a case, use a side support in the middle section. The spacing (L) of the support must be no more than the values shown in the graph on the right.

⚠ Caution

- 1. If the cylinder mounting surfaces are not measured accurately, using a side support may cause poor operation. Therefore, be sure to level the cylinder tube when mounting. Also, for long stroke operation involving vibration and impact, use of a side support is recommended even if the spacing value is within the allowable limits shown in the graph.
- 2. Support brackets are not for mounting; use them solely for providing support.



MY1 Series

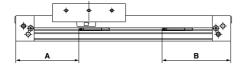

Auto Switch Mounting 1

Proper Auto Switch Mounting Position (Detection at stroke end)

MY1B (Basic type) Ø10, Ø16, Ø20

ø50 to ø100

Proper Auto Switch Mounting Position


(mm)

Auto switch model			D-A D-A	9□ 9□V	D-Y59□/Y7P D-Y69□/Y7PV D-Y7□W D-Y7□WV D-Y7BA D-Z7□/Z80		
Bore size \	Α	В	Α	В	Α	В	
10	24	86	20	90	_	_	
16	31.5	128.5	27.5 132.5		_	_	
20	39	161	35	165	_	_	
50	_	_	_	_	272.5	127.5	
63	322.5	137.5	_	_	317.5	142.5	
80	489.5	200.5	_	_	484.5	205.5	
100	574.5	225.5	_	_	569.5	230.5	


Note 1) D-M9□□□type cannot be mounted on ø50.

Note 2) Adjust the auto switch after confirming the operating condition in the actual setting.

MY1M (Slide bearing guide type) Ø16, Ø20

ø**25 to** ø**63**

Proper Auto Switch Mounting Position

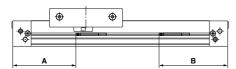
(mm) MY1H

MY1B MY1H

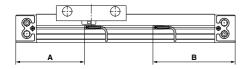
MY1B

MY1M MY1C

MY1 HT MY1 DW


H/HT

MY3A MY3B MY3M


Auto switch model				D-Y590 D-Y690 D-Y70 D-Y70 D-Z70	⊒Y7PV W WV	
Bore size \	Α	В	Α	A B		В
16	74	86	70	90	_	_
20	94	106	90	110	_	_
25	143.5	75.5	_	_	139.5	80.5
32	189.5	90.5	_	_	184.5	95.5
40	234.5	105.5	_	_	229.5	110.5
50	283.5	116.5	_	_	278.5	121.5
63	328.5	131.5	_	_	323.5	136.5

Note) Adjust the auto switch after confirming the operating condition in the actual setting.

MY1C (Cam follower guide type) \emptyset 16, \emptyset 20

ø25 to ø63

Proper Auto Switch Mounting Position

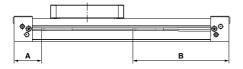
D-M9□ D-Y59□/Y7P model D-M9□V D-Y69 /Y7PV D-M9□W D-A9□ D-Y7□W D-M9□WV D-A9□V D-Y7□WV D-M9□A D-Z7□/Z80 D-M9□AV Bore size В Α В Α В 16 74 86 70 90 20 94 106 90 110 25 102 97 123 118 32 148 132 127 153 40 162.5 175.5 182.5 157.5 50 283.5 116.5 278.5 121 5 63 328.5 131.5 323.5 136.5

Note) Adjust the auto switch after confirming the operating condition in the actual setting.

D-□

Technical

1331

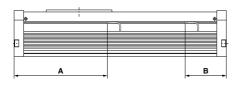


MY1 Series

Auto Switch Mounting 2

Proper Auto Switch Mounting Position (Detection at stroke end)

MY1H (Linear guide type) ø10, ø16, ø20


Proper Auto Switch Mounting Position

(mm)

Auto switch model		□V □W □WV □A	D-A9□ D-A9□V		V D-A9□V		D-Y59□/Y7P D-Y69□/Y7PV D-Y7□W D-Y7□WV D-Z7□/Z80	
Bore size \	Α	В	Α	В	Α	В		
10	24	86	20	90	_	_		
16	31.5	128.5	27.5	132.5	_	_		
20	39	161	35	165	_	_		

Note) Adjust the auto switch after confirming the operating condition in the actual setting.

MY1HT (High rigidity/Linear guide type) ø50, ø63

Proper Auto Switch

Mounting Position (mm) D-Y59□/Y7P D-Y69 /Y7PV D-Y7□W D-Y7□WV D-Y7BA D-Z7□/Z80 Bore size 50 290.5 123.5 335.5

Note) Adjust the auto switch after confirming the operating condition in the actual setting.

How to Mount the Auto Switch (For MY1HT)

When attaching an auto switch, first take a switch spacer between your fingers and press it into a switch mounting groove. When doing this, confirm that it is set in the correct mounting orientation, or reattach if necessary

Next, insert an auto switch into the groove and slide it until it is positioned under the switch

After establishing the mounting position, use a watchmakers flat head screwdriver to tighten the auto switch mounting screw which is included.

past the point at which tightening can be

Note) When tightening an auto switch mounting screw, use a watchmaker's screwdriver with a grip diameter of 5 to 6 mm. Also, tighten with a torque of about 0.05 to 0.1 N·m As a guide, it should be turned about 90°

Switch Spacer No.

Switch mounting groove

Cylinder series	Applicable bo	ore size (mm)
Cyllinder series	50	63
MY1HT	ВМР	1-032

Auto Switch Mounting MY1 Series

Operating Range

Note) Since this is a guideline including hysteresis, not meant to be guaranteed. (Assuming approximately $\pm 30\%$ dispersion.) There may be the case it will vary substantially depending on an ambient environment

MY1B (Basic ty	/pe)						(mm)
Auto switch model			В	ore siz	е		
Auto switch model	10	16	20	50	63	80	100
D-A9□/A9□V	6	6.5	8.5	_	_	_	_
D-M9□/M9□V D-M9□W/M9□WV D-M9□A/M9□AV	3.5	4	5.5	-	12	12	11.5
D-Z7□/Z80	_	_	_	11.5	11.5	11.5	11.5
D-Y59□/Y69□ D-Y7P/Y7PV D-Y7□W/Y7□WV	_	_	_	3.5	3.5	3.5	3.5

D-M9□□□type cannot be mounted on ø50.

MY1M (Slide bearing guide type)

, , , , , , , , , , , , , , , , , , ,								
A 1	Bore size							
Auto switch model	16	20	25	32	40	50	63	
D-A9□/A9□V	11	7.5	_	_	_	_	_	
D-M9□/M9□V D-M9□W/M9□WV D-M9□A/M9□AV	7.5	7.5	8.5	8.5	9.5	7	6	
D-Z7□/Z80	_	_	12	12	12	11.5	11.5	
D-Y59□/Y69□ D-Y7P/Y7PV D-Y7□W/Y7□WV			5	5	5	5.5	5.5	

MY1C (Cam follower guide type)

				<i>,</i>			
A 1 2 1 1 . 1	Bore size						
Auto switch model	16	20	25	32	40	50	63
D-A9□/A9□V	11	7.5	_	_	_	_	_
D-M9□/M9□V D-M9□W/M9□WV D-M9□A/M9□AV	7.5	7.5	7	8	8.5	7	6
D-Z7□/Z80	_	_	12	12	12	11.5	11.5
D-Y59□/Y69□ D-Y7P/Y7PV D-Y7□W/Y7□WV	_	_	5	5	5	5.5	5.5

MY1H (Linear guide type) (mm)

Auto switch model	Во	re size	
Auto switch model	10	16	20
D-A9□/A9□V	11	6.5	8.5
D-M9□/M9□V D-M9□W/M9□WV D-M9□A/M9□AV	3	4.5	5
D-Z7□/Z80	_	_	_
D-Y59□/Y69□ D-Y7P/Y7PV D-Y7□W/Y7□WV	_	_	_

MY1HT

(High rigidity/Linear guide type) (mm)

(···3····3····)/··· 3······ -) -/ (·····)				
Auto switch model	Bore size			
	50	63		
D-Z7□/Z80	11	11		
D-Y59□/Y69□ D-Y7P/Y7PV D-Y7□W/Y7□WV D-Y7BA	5	5		

MY1M MY1C

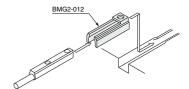
MY1B MY1H MY1B

MY1H

MY1

 $\square W$ MY2C

MY2 H/HT MY3A MY3B


MY3M

Switch Mounting Bracket: Part No.

Auto switch model	Bore size (mm)		
	ø10, ø16, ø20	ø25 to ø100	
D-A9□/A9□V D-M9□/M9□V D-M9□W/M9□WV D-M9□A/M9□AV	_	BMG2-012	

Note) D-A9□□ type cannot be mounted on ø50 to ø100 of the MY1B, and ø25 to ø63 of the MY1C and MY1M. D-M9□□□ type cannot be mounted on ø50 of the

Ø25 to Ø100: M9□(V)/M9□W(V)/M9□A(V)

Besides the models listed in How to Order, the following auto switches are applicable. Refer to pages 1575 to 1701 for the detailed specifications.

(mm)

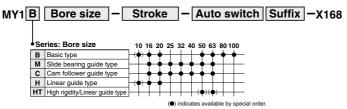
(mm)

Auto switch type	Part no.	Electrical entry (Fetching direction)	Features	Applicable bore size	
Solid state	D-Y69A, Y69B, Y7PV	Grommet (Perpendicular)	_		
	D-Y7NWV, Y7PWV, Y7BWV		Diagnostic indication (2-color indicator)	ø25 to ø100	
		D-Y59A, Y59B, Y7P	Grommet (In-line)	_	025 10 0 100
	D-Y7NW, Y7PW, Y7BW	Grommet (in-line)	Diagnostic indication (2-color indicator)		

For solid state auto switches, auto switches with a pre-wired connector are also available. Refer to pages 1648 and 1649 for details. * Normally closed (NC = b contact) solid state auto switches (D-F9G/F9H/Y7G/Y7H types) are also available. Refer to pages 1593 and 1595 for details. D-

MY1 Series

Made to Order: Individual Specifications


Please contact SMC for detailed dimensions, specifications and lead times.

1 Helical Insert Thread Specifications

Symbol -X168

Helical insert thread is used for the slide table mounting thread, the thread size is the same as the standard model.

Example) MY1B20G-300L-M9BW-X168

MY1 Series Specific Product Precautions 1

Be sure to read this before handling the products.

Refer to back page 50 for Safety Instructions and pages 3 to 12 for Actuator and Auto Switch Precautions.

Selection

1. When using a cylinder with long strokes, implement an intermediate support.

When using a cylinder with long strokes, implement an intermediate support to prevent the tube from sagging and being deflected by vibration or an external load.

Refer to the Guide for Side Support Application on pages 1252, 1275, 1295, 1316 and 1330.

For intermediate stops, use a dual-side pressure control circuit.

Since the mechanically jointed rodless cylinders have a unique seal structure, slight external leakage may occur. Controlling intermediate stops with a 3 position valve cannot hold the stopping position of the slide table (slider). The speed at the restarting state also may not be controllable. Use the dual-side pressure control circuit with a PAB-connected 3 position valve for intermediate stops.

3. Constant speed.

Since the mechanically jointed rodless cylinders have a unique seal structure, a slight speed change may occur. For applications that require constant speed, select an applicable equipment for the level of demand.

4. Load factor of 0.5 or less

When the load factor is high against the cylinder output, it may adversely affect the cylinder (condensation, etc.) and cause malfunctions. Select a cylinder to make the load factor less than 0.5. (Mainly when using an external guide)

5. Cautions on less frequent operation

When the cylinder is used extremely infrequently, operation may be interrupted in order for anchoring and a change lubrication to be performed or service life may be reduced.

6. Consider uncalculated loads such as piping, cableveyor, etc., when selecting a load moment Calculation does not include the external acting force of piping, cableveyor, etc. Select load factors taking into account the external acting force of piping, cableveyor, etc.

7. Accuracy

The mechanical jointed rodless cylinder does not guarantee traveling parallelism. When accuracy in traveling parallelism and a middle position of stroke is required, please consult SMC.

Mounting

∧ Caution

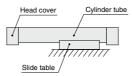
- Do not apply strong impacts or excessive moment to the slide table (slider).
 - The slide table (slider) is supported by precision bearings (MY1C, MY1H) or resin bearings. Therefore, do not apply strong impacts or excessive moment, etc., when mounting workpieces.

Mounting

⚠ Caution

- When connecting to a load which has an external guide mechanism, use a discrepancy absorption mechanism.
 - Mechanically jointed rodless cylinders can be used with a direct load within the allowable range for each type of guide. Please note that careful alignment is necessary when connecting to a load having an external guide mechanism. Mount the external guide mounting brackets and floating brackets in a place where the required degree of freedom for the floating Y and Z axes can be secured.

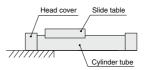
The thrust transmission area of the floating bracket must be fixed so that it does not partially contact the body.


* Refer to the Coordinates and Moment in Model Selection on page 1229 for the details of floating Y and Z axes.

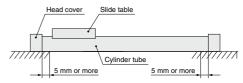
Do not mount cylinders as they are twisted.

When mounting, be sure for a cylinder tube not to be twisted. The flatness of the mounting surface is not appropriate, the cylinder tube is twisted, which may cause air leakage due to the detachment of a seal belt, damage a dust seal band, and cause malfunctions.

Do not mount a slide table on the fixed equipment surface.


It may cause damage or malfunctions since an excessive load is applied to the bearing.

Mounting with a slide table (slider)


Consult SMC when mounting in a cantilevered way.Since the cylinder body deflects, it may cause malfunctions.

Since the cylinder body deflects, it may cause malfunctions Please consult SMC when using it this way.

Mounting in a cantilevered way

Fixed parts of the cylinder on both ends must have at least 5 mm of contact between where the bottom of the cylinder tube and the equipment surface.

MY1B

MY1H

MY1B

MY1M

MY1C

MY1H

MY1

 $\square W$

MY2C

MY2

H/HT

MY3A

MY3B

MY3M

MY1 Series Specific Product Precautions 2

Be sure to read this before handling the products.

Refer to back page 50 for Safety Instructions and pages 3 to 12 for Actuator and Auto Switch Precautions.

Mounting

Do not generate negative pressure in the cylinder tube.

Take precautions under operating conditions in which negative pressure is generated inside the cylinder by external forces or inertial forces. Air leakage may occur due to separation of the seal belt. Do not generate negative pressure in the cylinder by forcibly moving it with an external force during the trial operation or dropping it with self-weight under the non-pressure state, etc. When the negative pressure is generated, slowly move the cylinder by hand and move the stroke back and forth. (When using with a stroke adjustment unit, please either remove the unit or adjust the stroke to the full stroke.) After doing so, if air leakage still occurs, please consult SMC.

Do not unnecessarily alter the guide adjustment setting.

 The adjustment of the guide is preset and does not require readjustment under normal operating conditions. Therefore, do not unnecessarily alter the guide adjustment setting. However, series other than the MY1H Series can be readjusted and their bearings can be replaced.

To perform these operations, refer to the bearing replacement procedure given in the operation manual.

Do not get your hands caught during cylinder operation.

For the cylinder with a stroke adjustment unit, the space between the slide table and stroke adjustment unit is very small, and your hands may get caught. When operating without a protective cover, be careful not to get your hands caught.

Operating Environment

⚠ Warning

- Do not use in an environment where the cylinder is exposed to coolant, cutting oil, water drops, adhesive foreign parti-cles, dust, etc. and avoid use with compressed air containing drainage and foreign particles.
 - Foreign matter or liquids on the cylinder's interior or exterior can wash out the lubricating grease, which can lead to deterioration and damage of dust seal band and seal materials, causing a danger of malfunction.

When operating in locations with exposure to water and oil, or in dusty locations, provide protection such as a cover to prevent direct contact with the cylinder, or mount so that the dust seal band surface faces downward, and operate with clean compressed air.

2. Carry out cleaning and grease application suitable for the operating environment.

Carry out cleaning regularly when using in an operating environment in which the product is likely to get dirty.

After cleaning, be sure to apply grease to the top side of the cylinder tube and the rotating part of the dust seal band. Apply grease to these parts regularly even if not after cleaning. Please consult SMC for the cleaning of the slide table (slider) interior and grease application.

Service Life and Replacement Period of Shock Absorber

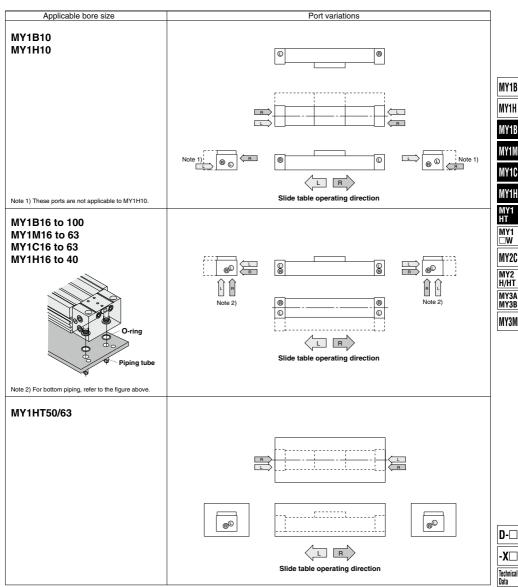
⚠ Caution

 Allowable operating cycle under the specifications set in this catalog is shown below.

1.2 million times RB08□□

2 million times RB10□□ to RB2725

Note) Specified service life (suitable replacement period) is the value at room temperature (20 to 25°C). The period may vary depending on the temperature and other conditions. In some cases the absorber may need to be replaced before the allowable operating cycle above.


MY1 Series **Specific Product Precautions 3**

Be sure to read this before handling the products. Refer to back page 50 for Safety Instructions and pages 3 to 12 for Actuator and Auto Switch Precautions.

⚠ Caution

Centralized Piping Port Variations

• Head cover piping connection can be freely selected to best suit different piping conditions.

-X□